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Preface

A vector is a physical entity endowed with magnitude and orientation;
examples are the position, the velocity, and the acceleration. A vector
is typically described by its components in a chosen frame of reference,
Cartesian or non-Cartesian, rectilinear or curvilinear.

A tensor is also a physical entity described by a higher number of
components in a chosen frame of reference. In computational practice,
the components of a tensor are typically stored in a two- or higher-
dimensional array.

Vectors and tensors are distinguished by our ability to deduce their
components in a certain frame of reference defined by a base from
those in any other frame of reference defined by another base by simple
geometrical transformations. To indicate this ability, we say that the
physical entity represented by a tensor is objective or frame invariant.

All physical entities should be frame invariant; if they were not,
observation and computation would be subjective, that is, the results
would depend on the position and orientation of an observer or mea-
suring instrument.

A zeroth-order tensor is a scalar whose value is frame-independent;
examples are the temperature of a star, the angle between two vectors,
and the distance between two cities. A first-order tensor is a vector that
has the same magnitude and points in the same direction independent
of the location of an observer.

The stress tensor is a second-order tensor encapsulating the trac-
tions exerted on three small mutually perpendicular faces in a solid or
fluid. Higher-order tensors and their components in an arbitrary frame
of reference can be defined. Examples are the alternating three-index
tensor and the Riemann–Christoffel four-index curvature tensor.

My goal in this book is to present a concise and accessible intro-
duction to vectors and tensors in Cartesian or non-Cartesian, rectilinear
or curvilinear coordinates in a way that couples theory and numerical
computation.

ix
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The notion of uniadic, dyadic, and multiadic bases is emphasized,
differential operations on vector and tensor fields inside volumes and
over surfaces are derived in terms of the Christoffel symbols and the
curvature tensor, and applications in fluid mechanics, membrane theory,
and theory of shells are discussed.

Original derivations and novel approaches are presented, including
the construction of covariant coordinate fields and the derivation of
Green’s function of the convection–diffusion equation.

In Chapter 1, the concept of vectors endowed with magnitude and
orientation is introduced and the description of a vector in terms of its
components in a specified base is discussed. Transformation rules for
vector components naturally leads us to the notion of vectors as first-
order tensors as opposed to mere one-dimensional numerical arrays.
Dyadic bases and the concept of tensors are introduced in a similar way,
the description of tensors in terms of their components in a specified
base is discussed, and transformation rules are established.

In Chapter 2, vectors and tensor representations in dual biorthogonal
bases are discussed, the apparatus of covariant and contravariant bases
and associated components is explained, and relevant transformation
rules for vectors and tensors are established. The discussion serves as
a natural introduction to the subject of curvilinear coordinates where
biorthonormal bases are constructed with reference to contravariant
and covariant coordinates defined by families of curved lines in space.
This natural introduction serves to emphasize that a tensor is a tensor
is a tensor: the concept of covariant and contravariant tensors is not
appropriate.

In Chapter 3, basic notions and fundamental concepts underlying
the structure, construction, and properties of curvilinear coordinates
in two dimensions are discussed. In particular, the dual bases dis-
cussed in Chapter 2 are reintroduced with reference to contravariant
and covariant coordinates and associated base vectors. Following this
introduction, finite-difference methods for solving the Laplace and Pois-
son equations on structured grids are developed and implemented to
demonstrate the practical usefulness of the theoretical apparatus.
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In Chapter 4, a comprehensive discussion of tensors in non-Cartesian
coordinates is presented from the viewpoint of applied mathematics,
physics, and engineering. The Christoffel symbols are defined in terms
of derivatives of covariant base vectors with respect to contravariant
coordinates, and the notion of covariant derivatives of vector and tensor
components is discussed. A covariant derivative is a derivative of a
vector or tensor component with respect to a contravariant coordinate.

In Chapter 5, vector and tensor calculus on non-Cartesian coor-
dinates discussed, and expressions for the divergence, the curl, the
gradient, the Laplacian, and other differential operations are derived
using an expedient method that circumvents a great deal of manip-
ulations. Having introduced the necessary framework, applications in
mathematical physics are discussed. While stating the contravariant or
covariant components of the governing equations in arbitrary curvilin-
ear coordinates is straightforward, subtleties arise in the case of moving
coordinates. The notion of convected coordinates is introduced and ex-
pressions for Green’s functions of the convection–diffusion equation are
derived.

In Chapter 6, the apparatus of curvilinear coordinates is specialized
to surfaces embedded in space with the introduction of the curvature
tensor. Surface calculus is discussed and the Gauss surface divergence
theorem is established with applications to force and bending moment
equilibria of membranes and thin shells.

A suite of Matlab1 codes encapsulated in a library named Tun-

lib accompany the text. The codes confirm theoretical derivations
presented in the book and encode numerical methods for comput-
ing solutions of selected partial differential equations. The owner of
this book can download Tunlib freely from the book Internet site:
http://dehesa.freeshell.org/TUN

1Matlab® is a proprietary computing environment for numerical compu-

tation and data visualization. Matlab and Simulink are registered trade-

marks of The MathWorks, Inc. For product information, please contact:

The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, USA,

Tel: 508-647-7000, Fax: 508-647-7001, E-mail: info@mathworks.com, Web:

www.mathworks.com
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This book is suitable for self study and as a text in an upper-level
undergraduate or graduate level core or elective course. The theoreti-
cal discussion and computational developments assume an upper-level
undergraduate or entry-level graduate level knowledge of applied math-
ematics on readily accessible topics.

C. Pozrikidis

2026
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Notation

a Scalars are set in italic
A Vectors and matrices are set in bold face
AT Matrix transpose
A−1 Matrix inverse
· Vector inner product or matrix product
× Outer product of two vectors
⊗ Tensor product of two vectors
∇ Gradient (nabla) operator
∇2 Laplacian operator
∇2f = 0 Laplace equation
∇2f + g = 0 Poisson equation
∇2f + κf = 0 Helmholtz equation

δij Kronecker’s delta
ǫijk Levi–Civita symbol (alternaing tensor)

gi covariant base vector
xi contravariant coordinate
gij covariant metric coefficients
gi contravariant base vector
xi covariant coordinate
gij contravariant metric coefficients
vα Cartesian vector component
vi contravariant vector component
vi covariant vector component

xiii
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P tangential projection operator
H Gaussian curvature
B curvature tensor
κm mean curvature

Γij Christoffel symbol
Γk
ij Christoffel symbol of the second kind
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Chapter 1

Vectors and tensors

Vectors admit rigorous and informal interpretations: physical, concep-
tual, and as members of mathematical spaces endowed with specific
measures, properties, and interaction rules.

In computational practice, vectors are represented by one-dimensional
arrays whose elements are the vector components in a chosen base.
Tensors are represented by higher-dimensional arrays arranged into ma-
trices whose elements are the tensor components in a dyadic or higher-
dimensional base.

Transformation rules for matrix components in different bases and
coordinate systems lead us to the notion of tensors. A matrix is qualified
as a tensor if the associated matrix components transform according
to precise geometrical rules.

1.1 Physical and conceptual vectors

A physical or conceptual vector is a physical or conceptual entity en-
dowed with two attributes: (a) magnitude or length, and (b) direction
and orientation in a two-dimensional plane, three-dimensional space, or
higher-dimensional hyperspace.

Examples are the position vector defined with respect to a speci-
fied origin where an observer resides, a vector indicating the flow of
automobile traffic, the flow of information, the motion of a cloud, the
translational velocity of a designated center of a rigid body in motion,
the angular velocity vector, the wind velocity at a certain location, the
force, and many others.

1
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(a) (b)

u

v

θ
u

v

Figure 1.1.1 (a) Illustration of vectors endowed with length (mag-
nitude) and orientation in N -dimensional space. Two vectors, v
and u, are inclined at a physical or conceptual angle, θ. (b) To
add two vectors, we pipeline them from beginning to end and
then connect the first end point to the last end point.

1.1.1 First and second end-points

A conceptual vector can be envisioned as having a starting or first point
and an ending or second point. In the case of a free vector, this ordered
pair of points can be translated, but not rotated, freely in space as an
ordered pair. In the case of a pinned vector, the end points are fixed.
The word vector describes in Latin the conveyance of the starting point
to the ending point.

A vector in a two-dimensional plane or three-dimensional space is
drawn as a straight segment with an arrow at the second point away
from the first point, as shown in Figure 1.1.1.

1.1.2 Multiplication by a scalar

If we multiply a vector by a positive or negative scalar, we will change
its length by a factor that is equal to the magnitude of the scalar,
preserve the direction, and either maintain the orientation if the scalar
is positive or flip the orientation if the scalar is negative. For example,
if we multiply a vector by −1, we will flip the vector into the opposite
direction while leaving the magnitude of the vector unchanged.

1.1.3 Addition and subtraction

To add two vectors, we pipeline them from beginning to end in an
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arbitrary order, as shown in Figure 1.1.1(b). The sum is another vector
whose first point is the first point of the first vector and second point is
the second point of the second vector. The magnitude and orientation
of the new vector are determined by those of the added vectors.

To subtract a vector from another vector, we flip the subtracted
vector and then perform addition.

1.1.4 Parallel vectors

If adding one vector to another vectors does not change the direction
but may possibly flip the orientation of the first vector, the two vectors
are either parallel or anti-parallel.

1.1.5 Relative orientation and inner product

The inner product of a vector, v, with another vector, u, is a scalar
denoted by a centered dot (·) and defined as

v · u = |v| |u| cos θ, (1.1.1)

where the vertical bars denote the magnitude of the enclosed vector and
θ is the physical or conceptual angle between the two vectors varying
between and including 0 and π, as shown in Figure 1.1.1(a).

If θ = 1
2
π, the two vectors are mutually orthogonal. If θ = 0, the

two vectors are parallel. If θ = π, the two vectors are anti-parallel. By
the definition of the inner product,

v · u = u · v. (1.1.2)

The inner product is often called a projection.

1.1.6 Vector length or norm

The square of the length or norm of a vector, v, denoted by |v|, is the
self-inner product, also called the self-projection,

|v|2 = v · v. (1.1.3)

This formula arises from (1.1.1) by setting u = v and θ = 0. This
definition makes an essential association between the length of a vector
and the scalar generated by the inner product.
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b 3 b
2

b
1

b
N

Figure 1.2.1 Illustration of a collection of N linearly independent
vectors comprising a base.

1.1.7 Outer product

The outer product of an ordered pair of two vectors is a new vector that
is perpendicular to the plane or hyperplane hosting the two vectors. The
magnitude of the new vector is the area, volume, or hypervolume of
the parallelepiped or hyper-parallelepiped formulated by the two vectors
in their space. In two or three dimensions, the orientation of the new
vector is determined by the right-hand rule.

Exercise

1.1.1 Explain in physical terms why, in order to incline a vector, we
may add another orthogonal vector.

1.2 Vector base and vector components

Consider a set of N arbitrary vectors,

b1, b2, . . . , bN , (1.2.1)

comprising a vector base, as shown in Figure 1.2.1. This means that
no vector in the base can be expressed as a linear combination of the
other vectors.
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An arbitrary vector, v, can be resolved into a weighted sum of these
base vectors,

v = c1 b1 + · · ·+ cNbN =
N∑

i=1

ci bi, (1.2.2)

where multiplication by a scalar coefficient, ci, is followed by addition
using the rules of vector manipulation discussed in Section 1.1.

The N scalar coefficients, ci, are the components of the vector v in
the vector base, bi. In applications, the base vectors bi are dimension-
less, while the vector components carry physical units, such as mass,
time, or length attributed to v. A dimensionless vector can be displayed
or graphed in a space of dimensionless axes.

The vector components, ci, were intentionally denoted by a symbol
other than vi; the latter denote vector components in the universal or
laboratory Cartesian system, as discussed in Section 1.2.4.

1.2.1 Einstein summation convention

The Einstein summation convention stipulates that, if an index appears

twice in a product, summation over that index is implied. If an index
appears more then twice, then summation is not implied. A free index
appears only once.

Subject to the Einstein summation convention, expansion (1.2.2) is
written without the summation symbol as

v = ci bi, (1.2.3)

where i is summed implicitly from 1 to N . In general, the summation
range is not stated explicitly but rather implied.

1.2.2 Multiplication by a scalar

Using expansion (1.2.3), we find that the product of a vector, v, with
a scalar, α, is a new vector, u, with components α ci,

u ≡ αv = (α ci)bi, (1.2.4)
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where summation is implied over the repeated index, i. The distributive
property of multiplication has been invoked to write this equation.

1.2.3 Addition

The sum of a vector, v = ci bi, and another vector, u = dibi, is a new
vector, w = qi bi, with components qi = ci + di, that is,

w = v + u = (ci + di)bi. (1.2.5)

To find the sum of two vectors, we merely add their components in a
specified vector base.

1.2.4 Subtraction

The difference between a vector, v = ci bi, and another vector, u =
di bi, is a new vector, p = qi bi, where pi = ci − di, that is,

p = v − u = (ci − di)bi. (1.2.6)

To find the difference between two vectors, we merely subtract their
components in a specified vector base.

1.2.5 Inner product

The inner product of a vector, v = ci bi, with another vector u = dj bj ,
is a scalar given by

v · u = (cibi) · (djbj) = ci dj (bi · bj), (1.2.7)

where summation is implied over the repeated indices, i and j, and the
untilded and tilded bases can be different or the same.

Expressing the inner products of the base vectors bi and bj in
terms of the angle subtended between these vectors, denoted by θ(ij)

and defined such that

bi · bj = |bi| |bj| cos θ(ij), (1.2.8)

we obtain
v · u = ci dj |bi| |bj| cos θ(ij), (1.2.9)

where summation is implied over the repeated indices, i and j.
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1.2.6 Computation of vector components

To compute the components of a vector v, in a specified base, cm, we
may take the inner product of expansion (1.2.3) with bm, where m is a
free index. The result is a system of N linear equations for the vector
components,

(bm · bi) ci = v · bm, (1.2.10)

where summation is implied over the repeated index, i. Explicitly, the
linear system takes the form




b1 · b1 · · · b1 · bN
...

...
bN · b1 · · · bN · bN


 ·



c1
...
cN


 =




v · b1
...

v · bN


 . (1.2.11)

This linear system can be solved by standard analytical or numerical
methods, such as Cramer’s rule, Gauss elimination, or LU decomposi-
tion. Note that, if all base vectors are mutually orthogonal, only the
diagonal elements of the matrix on the left-hand side survive. Con-
sequently, the computation of the vector components is considerably
simplified.

Expressing the inner products in terms of (a) the relative angles
between the vectors bm and bi, denoted by θ(mi) and defined such
that

bm · bi = |bm| |bi| cos θ(mi), (1.2.12)

and (b) the relative angle between v and bm, denoted by θ(m) and
defined such that

v · bm = |v| |bm| cos θ(m), (1.2.13)

we obtain

|bi| cos θ(mi) ci = |v| cos θ(m) (1.2.14)

form = 1, . . . , N , where summation is implied over the repeated index,
i. The linear system (1.2.11) takes the form
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


|b1| cos θ(11) · · · |b1| cos θ(1N)

...
...

|bN | cos θ(N1) · · · |bN | cos θ(NN)


 ·



c1
...
cN


 = |v|




cos θ(1)

...
cos θ(N)


 ,

(1.2.15)

where cos θ(ii) = 1. The solution can be found by standard numerical
methods.

1.2.7 Component array

The vector components, ci, can be encapsulated in an array, c, whose
elements depend on the chosen vector base, bi,

c =



c1
...
cN


 . (1.2.16)

The vector v can be reconstructed from this array and associated base
vectors using the rules of scalar–vector multiplication and vector addi-
tion.

If the component arrays of two vectors are equal, the two vectors
are the same. Conversely, if two vectors are identical, their component
arrays are equal.

1.2.8 Object described by components

An ellipse is an object described either in terms of its two axes or in
terms of one axis and the aspect ratio. In the extensible markup lan-
guage (XML) notation, an ellipse is described by the following state-
ment involving two attributes:

<ellipse first axis="0.1" second axis="0.2"/>

An alternative description is:
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<shape type="ellipse">

<first axis>0.1</first axis>

<second axis>0.2</second axis>

</shape>

where the first and second axes are attributes assigned numerical values
in some agreed units.

A certain vector, v, may also be regarded as an object, and the
associated component array pertaining to a certain base, c, may be
regarded as a host of encapsulated attributes representing the finger-
print of the object in the specified base. The base itself implements an
observational framework.

The essential features of the object should be independent of the
observational framework. The interpretation of an entity as an object
independent of its fingerprint or projection in an observational frame-
work underlies the notion of a tensor.

1.2.9 Orthogonal base

In the event that the base vectors bi are mutually orthogonal, denoted
by oi, the relative angles are θ(ij) = 90◦ for i 6= j. Consequently,
cos θ(ij) = 0 and

oi · oj = 0 (1.2.17)

for i 6= j. The linear expansion of an arbitrary vector takes the form

v = ci oi. (1.2.18)

Equation (1.2.14) provides us with an explicit expression for the vector
components,

ci =
|v|
|oi|

cos θi, (1.2.19)

where θi are direction cosines of the angles subtended between v and
oj .
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1.2.10 Cartesian base

When the length of each orthogonal base vector is unity, |oi| = 1, the
vector base is Cartesian. Cartesian base vectors are denoted as ei. By
definition,

ei · ej = δij, (1.2.20)

where δij is Kronecker’s delta representing the identity matrix: δij = 1
if i = j, or 0 otherwise.

The linear expansion of an arbitrary vector, v, takes the form

v = ci ei, (1.2.21)

where summation is implied over the repeated index, i. Equation
(1.2.19) provides us with the Cartesian array components

ci = |v| cos θi, (1.2.22)

where θi are direction cosines between v and ei inN -dimensional space.
When arranged in an array, the components ci provide us with a Carte-
sian vector, as discussed in Section 1.4.

Exercise

1.2.1 Factorize the matrix on the right-hand side of (1.2.15) into a
diagonal and a symmetric matrix.

1.3 Change of base

We may introduce an alternative set of base vectors indicated by a tilde,
b̃1, . . . , b̃N , and expand an arbitrary N -dimensional vector, v, as

v = c̃i b̃i, (1.3.1)

where c̃i are the components of v in the tilded base encapsulated in
the array

c̃ =



c̃1
...
c̃N


 . (1.3.2)
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The vector v can be reconstructed from this alternative array and as-
sociated base vectors.

1.3.1 Relation between base vectors

We expect that the array c will be related to the alternative array c̃,
in that one can be deduced from the other by a suitable transforma-
tion. To confirm this expectation, we express each base vector of the
tilded base in terms of base vectors in the untilded base using a linear
transformation,

b̃i = Hij bj , (1.3.3)

where H is a transformation matrix and summation is implied over the
repeated index, j. The matrix H does not necessarily have any specific
properties, that is, it not necessarily orthogonal or symmetric.

Multiplying the linear expansion (1.3.3) by the inverse element H−1
mi

and summing over i, we obtain

H−1
mi b̃i = H−1

mi Hij bj , (1.3.4)

where m is a free index and the superscript −1 denotes the matrix
inverse. Now invoking the definition of the matrix inverse, we set

H−1
mi Hij = δmj , (1.3.5)

where δmj is Kronecker’s delta representing the identity matrix: δmj = 1
if m = j, or 0 otherwise. Setting δmj bj = bm and rearranging, we
obtain

bm = H−1
mi b̃i, (1.3.6)

which is the companion of (1.3.3). If the matrix H happens to be
orthogonal, the inverse is equal to the transpose and H−1

mi = Him.

1.3.2 Relation between vector component arrays

Substituting (1.3.6) into (1.2.3), we obtain

v = ciH
−1
ij b̃j , (1.3.7)
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where summation is implied over the repeated indices, i and j. Com-
paring this expansion with (1.3.1), we conclude that

c̃j = ciH
−1
ij = H−T

ji ci (1.3.8)

or

c̃ = H−T · c, (1.3.9)

where the superscript −T denotes the inverse of the transpose. To
invert this relation, we multiply both sides with the transpose of the
matrix H and obtain

ci = HT
ij c̃j = Hji c̃j, (1.3.10)

or

c = HT · c̃. (1.3.11)

Note the partial similarity of the pair of (1.3.9) and (1.3.11) with the
pair of (1.3.3) and (1.3.6).

1.3.3 First-order tensors

If the components of a vector conform with the transformation rule
(1.3.9) and its inverse rule (1.3.11), summarized below,

c̃ = H−T · c, c = HT · c̃, (1.3.12)

then the vector is accepted as a first-order tensor. If they do not,
the vector is regarded as a mere numerical array all too familiar to
computed programmers.

Any physical vector employed in the physical sciences and engi-
neering is a first-order tensor. Examples are the position, the velocity,
the angular velocity, the force, and torque, and other similar vectors
endowed with magnitude and direction.

1.3.4 Note on notation

In the literature, the transpose of the transformation matrix H is some-
times employed in equation (1.3.3), by writing

b̃i = Lji bj, (1.3.13)
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where L = HT and the superscript T denotes the transpose. Corre-
spondingly, the vector components are related by

c̃ = L−1 · c, c = L · c̃, (1.3.14)

Care should be taken so that misinterpretations and errors do not arise
due to the juxtaposition of the indices when referring to other sources.

1.3.5 Inner product in terms of vector components

The inner product of a vector, v = ci bi, with another vector, u =
d̃j b̃j , is a scalar given by

v · u = (cibi) · (d̃jb̃j) = ci d̃j (bi · b̃j), (1.3.15)

where summation is implied over the repeated indices, i and j, and the
untilded and tilded bases can be different or the same. Expressing the
inner products of the base vectors bi and b̃j in terms of the angles
subtended between these vectors, denoted by ϕ(ij) and defined such
that

bi · b̃j = |bi| |b̃j| cosϕ(ij), (1.3.16)

we obtain

v · u = ci d̃j |bi| |b̃j| cosϕ(ij), (1.3.17)

where summation is implied over the repeated indices, i and j.

Exercise

1.3.1 Derive (1.3.11).

1.4 Cartesian vectors

The discussion of physical and conceptual vectors in the first three sec-
tions of this chapter hinges on four notions: (a) the notion of a vector
as an object, (b) the notion of vector multiplication by a scalar, (c) the
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notion of vector addition, and (d) the notion vector inner product de-
fined in terms of the magnitude of the participating vectors and relative
inclination angle.

An extended algebraic framework that allows us to conduct further
analysis and perform numerical computations can be established by
introducing the notion of the universal or laboratory Cartesian base.

1.4.1 Universal Cartesian base

Each base vector in the universal Cartesian base is associated with a
dimensionless N -dimensional numerical array denoted by ǫi for i =
1, . . . , N . By definition, all entries of the universal base arrays ǫi are
zero, except for the ith entry that is equal to 1. In three dimensions,

ǫ1 =




1
0
0


 , ǫ2 =




0
1
0


 , ǫ3 =




0
0
1


 . (1.4.1)

In the literature, these base arrays are denoted by a variety of symbols,
including î, ĵ, and k̂.

Next, we consider a physical or conceptual vector, v, and introduce
the expansion

v = vi ǫi, (1.4.2)

where summation is implied over the repeated index, i. Subject to
the preceding definitions, the physical vector, v, is now identified with
a numerical array, v, that is identical to the component array in the
universal Cartesian base,

v = vi ǫi =



v1
...
vN


 . (1.4.3)

The correspondence between a physical vector and a Cartesian array is
a fundamental equivalence concept.
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1.4.2 Physical units

The physical units of a vector, v, such as length, are conveyed by the
Cartesian components, vi. All components are assumed to have the
same units, that is, inhomogeneous arrays are not allowed. Cartesian
vectors whose components have different dimensions cannot be handled
by the standard framework.

1.4.3 Arbitrary Cartesian base

The arrays of an arbitrary Cartesian base satisfy the orthonormality
condition

ei · ej = δij, (1.4.4)

where δij is Kronecker’s delta.

For example, in two dimensions, we may have

e1 =
1√
2

[
1
1

]
, e2 =

1√
2

[
−1
1

]
. (1.4.5)

The length of each one of these vectors is unity, and the two vectors
are orthogonal.

This example underscores that a distinction should be made between
the universal Cartesian base, ǫi, and an arbitrary Cartesian base, ei.
A Cartesian base described by a set of Cartesian arrays, ei, is not
necessarily the universal base, ǫi.

1.4.4 Matrix of Cartesian base vectors

It is useful to introduce a matrix E hosting in its columns the Cartesian
vectors of a certain base,

E ≡




↑ ↑ ↑
e1 · · · eN
↓ ↓ ↓


 , (1.4.6)

defined such that Eij is the ith component of ej in the universal Carte-
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sian base. By definition,

ej =



E1j
...

ENj


 = ǫiEij , (1.4.7)

where summation is implied over the repeated index, i. If the Cartesian
base ei is the universal base, ǫi, then the matrix E is the identity matrix.

Since the projection of any column onto any other column is zero
and the projection of any column onto itself is unity,

ET ·E = I, (1.4.8)

where the superscript T denotes the matrix transpose and I is the iden-
tity matrix. This relation demonstrates that the matrix E is orthogonal,
satisfying

ET = E−1, E−T = E, (1.4.9)

where the superscript −1 denotes the matrix inverse and the superscript
−T denotes the inverse of the transpose.

For example, with reference to the base defined in (1.4.5),

E =
1√
2

[
1 −1
1 1

]
, ET =

1√
2

[
1 1

−1 1

]
. (1.4.10)

We may readily verify that the property E · ET = I is satisfied.

1.4.5 Vector components

An arbitrary vector, v, can be expanded in an arbitrary Cartesian base
as

v = cj ej , (1.4.11)

where cj are the vector components. If ej is the universal base, ej = ǫj ,
and only then, cj = vj according to (1.4.3). Substituting into this
expansion expression (1.4.7), we find that

v = cj ej = Eij cj ǫi, (1.4.12)
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where summation is implied over the repeated indices, i and j. This
expression shows that

v = E · c, (1.4.13)

where

c =



c1
...
cN


 (1.4.14)

is the component array. Conversely,

c = ET · v, (1.4.15)

where the superscript T denotes the matrix transpose. The component
array can be deduced by a mere matrix–vector multiplication.

For example, with reference to the base defined in (1.4.5), if c1 = 1
and c2 = 1, then

c =

[
1
1

]
, v =

1√
2

[
0
2

]
. (1.4.16)

In practice, given a vector, v, and a base, ei, we will be interested in
computing the vector components, ci.

1.4.6 Frame independence

A physical vector described by a Cartesian array, v, will have different
component vectors, c, in different Cartesian bases. If we change the
Cartesian base, v will remain the same, but the entries of the compo-
nent array c will be modified. A physical vector is a physical vector no
matter how it is described in terms of a chosen base. We say that a
physical vector is invariant or frame-independent. This property is the
cornerstone of a tensor.

1.4.7 Not every array represents a Cartesian vector

Every physical vector can be regarded as a Cartesian array, and vice

versa. However, not every array encountered in science, engineering,
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and elsewhere represents a physical or conceptual vector. Vector com-
ponent transformation rules must be obeyed, as discussed in Section
1.8.

Exercise

1.4.1 Confirm equation (1.4.13).

1.5 Vector inner and outer products

A pair of vectors can be multiplied in three ways: inner (dot) product
(·), outer (cross) product (×), tensor (dyadic or Cartesian) product
(⊗). The inner product is a scalar, the outer product is a vector,
and the tensor product is a matrix. The inner and outer products are
discussed in this section, while the tensor product is discussed in Section
1.6.

1.5.1 Inner product

The inner product of a vector, v = ciei, with another vector, u = djej ,
is a scalar denoted by a centered dot,

v · u = (ci ei) · (dj ej). (1.5.1)

Expanding the product, we write

v · u = ci dj (ei · ej) = ci dj δij = ci di, (1.5.2)

where δij is Kronecker’s delta representing the identity matrix. Conse-
quently,

v · u = |u| |v| cos θ = ci di, (1.5.3)

where summation is implied over the repeated index, i, and θ is the
relative inclination angle between the two vectors. We recall that, in
the universal frame, ci = vi and di = ui.
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1.5.2 Magnitude

The magnitude of a Cartesian vector, v, is

|v| =
√
v · v =

√
cici = |c|, (1.5.4)

where summation is implied over the repeated index, i. We expect
and will confirm that the magnitude |v| is insensitive to the choice of
Cartesian base, that is, it will depend only on the Euclidean norm of
the component array, |c|.

1.5.3 Relative inclination angle

Referring to (1.5.3), we find that the relative inclination angle between
two vectors, v = ciei and u = diei, is given by

θ = arctan
v · u
|v| |u| = arctan

ci di
|c| |d| (1.5.5)

in the range [0, π], where summation is implied over the repeated index,
i. This expression allows us to compute the relative inclination angle,
θ, in terms of the components of the two vectors involved.

1.5.4 Physical angles

The relative angle θ is physical in two or three dimensions, and con-
ceptual in higher dimensions. To show this, we recall that v · v = |v|2
and u · u = |u|2, and then write

(u− v) · (u− v) = |u|2 + |v|2 − 2v · u. (1.5.6)

By the law of cosines,

|u− v|2 = |u|2 + |v|2 − 2 |v||u| cosθ. (1.5.7)

Comparing these two equations, we find that

v · u = |v||u| cos θ, (1.5.8)

which proves the assertion.
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1.5.5 Cross product

The cross or outer product of an ordered pair of vectors, v = ciei and
u = djej, is a new vector,

w ≡ v × u = (ci ei)× (cj ej) = ci dj ei × ej , (1.5.9)

where ei × ej is a set of Cartesian vectors best defined in terms of the
Levi–Civita symbol discussed next.

1.5.6 Levi–Civita symbol

In three dimensions, N = 3 the Levi–Civita symbol, ǫijk, is defined such
that ǫijk = 1 for a cyclic permutation of indices, −1 for an anti-cyclic
permutation, and 0 otherwise. For example, ǫ312 = 1 and ǫ221 = 0.
Formally, we define

ǫijk =
1

2
(i− j)(j − k)(k − i) (1.5.10)

for i, j, k = 1, 2, 3. For example,

ǫ123 =
1

2
(1− 2)(2− 3)(3− 1) = 1. (1.5.11)

It can be shown that

ǫijk ǫlmn = det



δil δim δin
δjl δjm δjn
δkl δkm δkn


 , (1.5.12)

where i, j, k, l,m, n is a collection of six free indices.

Three useful properties of the Levi–Civita symbol originating from
(1.5.12) are

ǫijk ǫijk = 6, ǫijk ǫijl = 2 δkl,

ǫijk ǫilm = δjl δkm − δjm δkl, (1.5.13)

where summation is implied over indices that appear twice. Note that
the first identity involves two free indices, while the second identity
involves four free indices.
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1.5.7 Outer product of two Cartesian base vectors

The outer product of a pair of Cartesian base vectors is given by

ei × ej = ǫijk ek, (1.5.14)

where summation is implied over the repeated index, k. Conversely,

ǫijk = (ei × ej) · ek. (1.5.15)

The right-hand side is the mixed triple product of the Cartesian base
vectors.

In Section 1.16, we will see that the Levi–Civita symbol encapsulates
the Cartesian components of the alternating tensor.

1.5.8 Outer product in terms of the Levi–Civita symbol,

Using (1.5.14), we find that the outer or cross product of an ordered
pair of vectors, v = ciei and u = djej , is given by

w ≡ v × u = ci dj ǫijk ek = ǫkij ci djek. (1.5.16)

The last expression reveals that the components of the outer product
of two three-dimensional vector, w = c× d, are given by

wk = ǫkij ci dj = −ǫkji ci dj , (1.5.17)

where w = qiei. We see that terms can be freely transposed in a scalar
product.

Exercise

1.5.1 Prove (1.5.12).

1.6 Tensor product of two vectors

The tensor product of two vectors, v = ciei and u = diei, is a two-
index Cartesian tensor,

T ≡ v ⊗ u = (ci ei)⊗ (dj ej) = cidj ei ⊗ ej. (1.6.1)



D
R
A
F
T

22 Tensors Unravelled, C. Pozrikidis, © 2026

The collection of matrices

Eij ≡ ei ⊗ ej (1.6.2)

defines an orthonormal dyadic base. By definition, the kℓ element of
Eij is

[Eij]kℓ ≡ [ei]k × [ej ]ℓ, (1.6.3)

where × now denotes regular number multiplication, [ei]k is the kth
element of ei, and [ej ]ℓ is the ℓth element of ej . Subject to these
definitions,

T ≡ v ⊗ u = cidj Eij, (1.6.4)

where summation is implied over the repeated indices, i and j.

1.6.1 Trace

By the definition of the tensor product,

trace(ei ⊗ ej) = ei · ej = δij , (1.6.5)

and therefore

trace(v ⊗ u) = v · u = ci di, (1.6.6)

where summation is implied over the repeated index, i.

1.6.2 Universal Cartesian base

Referring to the universal Cartesian base, we set ei = ǫi and find that
all elements of the matrix ǫi ⊗ ǫj are zero, except for the ij element
that is equal to unity. Consequently, the elements of T are

Tij = viuj, (1.6.7)

so that

T ≡ v ⊗ u = viuj ǫi ⊗ ǫj. (1.6.8)

The matrix T is symmetric only if u and v are the same.
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1.6.3 Dyadic or Cartesian product

The tensor product is also known as the dyadic or Cartesian product.
The term Cartesian is used in probability theory with regard to the
joint probability distribution. The terms dyadic and tensor are used
in mathematics and mechanics. The significance of the terminology
tensor will become clear in the following discussion.

1.6.4 Components of the tensor product

We may write

T ≡ v ⊗ u = Cij Eij, (1.6.9)

where summation is implied over the repeated indices i and j, and

Cij = ci dj. (1.6.10)

The components, Cij, can be accommodated in an N × N matrix
denoted by C, which is generally different than the matrix T whose
elements are given in (1.6.7). The numbers encapsulated in the com-
ponent matrix C depend on the chosen dyadic base defined by the base
vectors, ei. Only in the universal Cartesian base, ǫi, the matrix C is
the same as T.

1.6.5 Multiplication properties of the tensor product

For any three vectors, v, u, and w,

(v ⊗ u) ·w = v (u ·w) (1.6.11)

and

w · (v ⊗ u) = u (w · v), (1.6.12)

where u ·w and v ·w are scalar inner products. The properties can be
proven readily working in index notation.

The double-dot product of two tensor products is a scalar defined
as

(v⊗ u) : (w⊗ q) = (v ·w)(u · q). (1.6.13)
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The last expression is the product of two scalars.

For any three vectors, v, u, and w,

(v ⊗ u)×w = v⊗ (u×w) (1.6.14)

and

w × (v ⊗ u) = (w × v)⊗ u, (1.6.15)

where × denotes the cross product. The properties can be proven
readily working in index notation.

1.6.6 A singular matrix

The matrix

A = I− v ⊗ u (1.6.16)

with elements Aij = δij − viuj is singular, subject to the restriction
that v · u = 1. The reason is that at least one eigenvalue is zero
with corresponding eigenvector v, that is, A · v = 0. The associated
eigenvector of the matrix transport (left eigenvector) is u, that is, A ·
u = 0.

1.6.7 Matrix representation

A matrix can be regarded as a collection of N vectors, vi, represented
by their components arranged down the matrix columns,

A ≡




↑ ↑ ↑
v1 · · · vN

↓ ↓ ↓


 . (1.6.17)

Using the properties of the tensor product, we find that

A = vk ⊗ ǫk, (1.6.18)

where ǫk is the universal Cartesian base and summation is implied over
the repeated index, k.
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Exercise

1.6.1 Compute the component matrix of the tensor product of two
vectors, v = [1, 2, 3] and u = [3, 2, 1] in the universal Cartesian base.

1.7 Position and coordinates

To locate a point in three-dimensional space, we introduce the position
vector, x connecting the origin of the universal Cartesian system to the
point. For convenience, the three elements of x are denoted by x1 = x,
x2 = y, x3 = z, so that

x =



x
y
z


 = x ǫx + y ǫy + z ǫz. (1.7.1)

The triplet (x1, x2, x3) = (x, y, z) constitutes a set of coordinates in
the universal Cartesian base.

1.7.1 Arbitrary Cartesian base

With reference to an arbitrary Cartesian system with base vectors ei,
the position is

x = x0 +X1 e1 +X2 e2 +X3 e3 = x0 +Xi ei, (1.7.2)

where x0 is the position of the origin of the Cartesian system with
respect to that of the universal system. The base vectors are given by

ei =
∂x

∂Xi
. (1.7.3)

Generalized coordinates can be defined in another physical or abstract
space.

1.7.2 Differential displacement

A differential displacement is resolved as

dx = dx ǫx + dy ǫy + dz ǫz = dXi ei. (1.7.4)
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Figure 1.7.1 Illustration of cylindrical polar coordinates, (x, σ, ϕ),
defined with respect to Cartesian coordinates, (x, y, z), where
σ is the distance from the x axis and ϕ is the azimuthal angle
around the x axis.

The square of the magnitude of the differential displacement is the
fundamental form of space, given by

ds2 ≡ dx · dx = (dx)2 + (dy)2 + (dz)2 = dXi dXi, (1.7.5)

where summation is implied over the repeated index, i. The associated
metric coefficients are 1, 1, 1.

1.7.3 Cylindrical polar coordinates

An arbitrary point in space can be identified by the cylindrical polar
coordinates, (x, σ, ϕ), where σ is the distance from the x axis and ϕ is
the azimuthal angle, as illustrated in Figure 1.7.1. The associated base
unit vectors are

ex =




1
0
0


 , eσ =




0
cosϕ
sinϕ


 , eϕ =




0
− sinϕ
cosϕ


 . (1.7.6)

Note that the unit vectors depend of ϕ.
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The position vector is

x = x ex + σ eσ (1.7.7)

and the differential displacement is

dx = dx ex + dσ eσ + σ deσ. (1.7.8)

Using expressions (1.7.6), we find that deσ = eϕ dϕ, yielding

dx = dx ex + dσ eσ + σ dϕ deϕ. (1.7.9)

The fundamental form of space takes the form

d2 = dx · dx = (dx)2 + (dσ)2 + σ2 (dϕ)2. (1.7.10)

The associated metric coefficients are 1, 1, σ2.

An arbitrary vector can be resolved as

v = vx ex + vσ eσ + vϕ eϕ, (1.7.11)

where vx, vσ, and vϕ are the cylindrical polar components of v.

The tensor product of two vectors v and u is a matrix,

T = v ⊗ u = vαuβ eα ⊗ eβ, (1.7.12)

where summation of the Greek indices is implied in the range x, σ, ϕ.
For example,

ex ⊗ ex =




1 0 0
0 0 0
0 0 0


 (1.7.13)

and

eϕ ⊗ eϕ =




0 0 0
0 sin2 ϕ − sinϕ cosϕ
0 − sinϕ cosϕ cos2 ϕ


 . (1.7.14)

Seven similar tensor products of the unit vectors generate similar ma-
trices.
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1.7.4 Spherical polar coordinates

An arbitrary point in space can be identified by the spherical polar
coordinates, (r, θ, ϕ), where r is the distance from the origin, θ is the
meridional angle, and ϕ is the azimuthal angle, as illustrated in Figure
1.7.2. The associated base unit vectors are

eθ =




− sin θ
cos θ cosϕ
cos θ sinϕ


 , eϕ =




0
− sinϕ
cosϕ


 , er =




cos θ
sin θ cosϕ
sin θ sinϕ


 .

(1.7.15)

Note that the unit vectors depend of θ and ϕ.

The position vector is described in terms of the radial base vector
alone,

x = r er. (1.7.16)

The differential displacement is

dx = dr er + r der. (1.7.17)

Using expressions (1.7.15), we find that

der = dθ eθ + sin θ dϕ eϕ. (1.7.18)

Substituting into (1.7.17), we obtain

dx = dr er + r dθ eθ + r sin θ dϕ eϕ. (1.7.19)

The fundamental form of space takes the form

d2 = dx · dx = (dr)2 + r2 (dθ)2 + r2 sin2 θ (dϕ)2. (1.7.20)

The associated metric coefficients are 1, r2, r2 sin2 θ.

An arbitrary vector, v, can be resolved as

v = vr er + vθ eθ + vϕ eϕ, (1.7.21)
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Figure 1.7.2 Illustration of spherical polar coordinates, (r, θ, ϕ),
defined with respect to the Cartesian coordinates, (x, y, z), and
cylindrical polar coordinates, (x, σ, ϕ), where r is the distance
from the origin, θ is the meridional angle, ϕ is the azimuthal
angle, and σ is the distance from the x axis.

where vr, vθ, and vϕ are the spherical polar components of the un-
derlying vector, v, and er, eθ, eϕ are position-dependent mutually
orthogonal unit vectors.

The tensor product of two vectors, v and u, is

T = vαuβ eα ⊗ eβ, (1.7.22)

where summation of the Greek indices is implied in the range r, θ, ϕ.
For example,

er ⊗ er =




cos2 θ cos θ sin θ cosϕ cos θ sin θ sinϕ
cos θ sin θ cosϕ sin2 θ cos2 ϕ sin2 θ sinϕ cosϕ
cos θ sin θ sinϕ sin2 θ sinϕ cosϕ sin2 θ sin2 ϕ




(1.7.23)

is a dense symmetric matrix. Eight similar tensor products of unit
vectors generate similar matrices.
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Exercise

1.7.1 Formulate the base matrix eσ⊗eσ in cylindrical polar coordinates.

1.8 Change of Cartesian base

Let ei be a set of mutually orthogonal unit vectors defining an arbitrary
Cartesian base, so that ei · ej = δij , where δij is Kronecker’s delta.
Also let ẽi be another set of mutually orthogonal unit vectors defining
another a Cartesian base, so that ẽi · ẽj = δij. One of the two bases
could be the universal base, ǫi.

1.8.1 Transformation matrix

The second set of base vectors, denoted by a tilde, can be related to
the first set by a linear expansion,

ẽi = Qij ej , (1.8.1)

where Q is a transformation matrix. The matrix Q is the counterpart
of the less specific matrix H introduced in (1.3.3). The change of
notation is motivated by the orthogonality of Q, demonstrated next.

Taking the inner product of both sides of equation (1.8.1) with em
or ẽm, where m is a free index, we find that

Qim ≡ ẽi · em, δim = QijQmj = QijQ
T
jm. (1.8.2)

The second equation shows that the transformation matrix is orthogo-
nal,

Q−1 = QT, Q−T = Q, (1.8.3)

where the superscript −1 denotes the matrix inverse, the superscript
T denotes the matrix transpose, and the superscript −T denotes the
inverse of the transpose. Consequently, equation (1.8.1) can be inverted
readily to yield

ei = Qji ẽj . (1.8.4)
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Note the order of the indices on the right-hand side.

1.8.2 Numerical confirmation of transformation rules

The following Matlab code named cartesian, located in directory Ve-

car of Tunlib, confirms these transformation rules:

%---

% first base

%---

thet1 = 0.0845*pi; % arbitrary

thet2 = thet1 + 0.5*pi

e1(1) = cos(thet1); e1(2) = sin(thet1);

e2(1) = cos(thet2); e2(2) = sin(thet2);

%---

% second base (tilded)

%---

thett1 = 0.1234*pi; % arbitrary

thett2 = thett1 + 0.5*pi;

et1(1) = cos(thett1); et1(2) = sin(thett1);

et2(1) = cos(thett2); et2(2) = sin(thett2);

%---

% transformation matrix

%---

Q(1,1) = et1(1)*e1(1) + et1(2)*e1(2);

Q(1,2) = et1(1)*e2(1) + et1(2)*e2(2);

Q(2,1) = et2(1)*e1(1) + et2(2)*e1(2);

Q(2,2) = et2(1)*e2(1) + et2(2)*e2(2);

%---

% conversions

%---
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E = [ e1(1) e2(1);

e1(2) e2(2)];

Et = [ et1(1) et2(1);

et1(2) et2(2)];

[Et E*Q']

[E Et*Q]

The prime in the penultimate line denotes the matrix transpose. Run-
ning the code generates the following output, as instructed by the last
two lines of the code:

0.9258 -0.3780 0.9258 -0.3780

0.3780 0.9258 0.3780 0.9258

0.9650 -0.2624 0.9650 -0.2624

0.2624 0.9650 0.2624 0.9650

We note that, as expected, the first and second pairs of columns are
identical.

1.8.3 Determinant

Taking the determinant of (1.8.3), we find that

det2(Q) = 1. (1.8.5)

In fact, since the vector base conforms with the right-handed rule,
det(Q) = 1.

In two dimensions, if the tilde system arises by rotating the untilded
system around the origin by angle ̺, then

Q ≡
[

cos ̺ sin ̺
− sin ̺ cos ̺

]
. (1.8.6)

The determinant of this matrix is readily confirmed to be unity. When
̺ = π, we find that Q = −I.
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1.8.4 Base transformation rules

The vectors ei can be arranged at the columns of a matrix, E, and the
vectors ẽi can be arranged at the columns of another matrix, Ẽ,

E ≡




↑ ↑ ↑
e1 · · · eN
↓ ↓ ↓


 , Ẽ ≡




↑ ↑ ↑
ẽ1 · · · ẽN
↓ ↓ ↓


 , (1.8.7)

where ET · E = I and ẼT · Ẽ = I. Using (1.8.1) and (1.8.4), we find
that

Ẽ = E ·QT, E = Ẽ ·Q, Q = ẼT ·E. (1.8.8)

If the matrixQ were not orthogonal, the inverse instead of the transpose
would appear on the right-hand side of the first relation.

1.8.5 Transformation of vector components

An arbitrary vector, v, can be expanded in each set of base vectors as

v = cj ej = c̃j ẽj , (1.8.9)

where summation is implied over the repeated index, j.

Projecting equation (1.8.9) onto ẽi, where i is a free index, we
obtain the tilded components,

c̃i = cj (ẽi · ej), (1.8.10)

where summation is implied over the repeated index, j. Projecting
equation (1.8.9) onto ei, we find that the untilded vector components
are given by

ci = c̃j (ei · ẽj), (1.8.11)

where summation is implied over the repeated index, j. We have found
that

c̃i = Qij cj , ci = Qji c̃j = c̃jQji = QT
ij c̃j, (1.8.12)
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where the superscript T denotes the matrix transpose. In vector nota-
tion,

c̃ = Q · c, c = QT · c̃. (1.8.13)

These relations confirm further that the matrix Q is orthogonal, that
is, its inverse is equal to its transpose.

Invoking (1.4.15), we write

c = ET · v, c̃ = ẼT · v. (1.8.14)

Combining these equations we find that

c̃ = ẼT · E · c, (1.8.15)

which is consistent with (1.8.13).

1.8.6 First-order tensors

If the components of a vector conform with the transformation rules
(1.8.12), then the vector is accepted as a first-order tensor. If they do
not, the vector is regarded as a mere numerical array.

In fact, the transformation rules (1.8.12) are specializations of those
shown in (1.3.12), summarized below for convenience,

c̃ = H−T · c, c = HT · c̃. (1.8.16)

The transformation rules (1.8.12) arise from those shown in (1.8.16)
by setting H = Q and recalling that Q−1 = QT, and thus Q−T = Q.

The differential displacement, dx, is a vector that qualifies as a
first-order tensor, where x is position in space. The proof relies on
elementary trigonometry.

Consequently, the velocity of a particle, v = dX/dt, is also a first-
order tensor, where X is the particle position and t stands for time. In
contrast, the vectorial array w = [vpx, v

q
y, v

s
z] is a first-order tensor only

when p = q = s = 1.
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1.8.7 Transformation matrix in terms of coordinates

Now we consider the Cartesian coordinates of the position in the un-
tilded and tilded bases, Xi and X̃i, and express the position as

x = x0 +Xi ei, x = x̃0 + X̃i ẽi, (1.8.17)

where x0 is the position of the origin. Differentiating these expressions,
or else using the chain rule, we obtain

ẽi ≡
∂x

∂X̃i

=
∂Xj

∂X̃i

∂x

∂Xj
=
∂Xj

∂X̃i

ej (1.8.18)

and

ei ≡
∂x

∂Xi

=
∂X̃j

∂Xi

∂x

∂X̃j

=
∂X̃j

∂Xi

ẽj. (1.8.19)

Projecting equation (1.8.18) onto em or ẽm, we obtain

Qim =
∂Xm

∂X̃i

, δim =
∂Xj

∂X̃i

Qmj , (1.8.20)

where m is a free index. Also projecting equation (1.8.18) onto ẽm or
em, we obtain

Qmi =
∂X̃m

∂Xi
, δim =

∂X̃j

∂Xi
Qjm. (1.8.21)

Renaming the indices in the last two sets of equations, we find that

Qij =
∂Xj

∂X̃i

=
∂X̃i

∂Xj

(1.8.22)

and

Q−1
ij =

∂Xi

∂X̃j

=
∂X̃j

∂Xi
= Qji = QT

ij , (1.8.23)

thereby confirming the orthogonality of the transformation matrix, Q.
From these relations, we find that

QijQ
−1
jk =

∂Xj

∂X̃i

∂X̃k

∂Xj

=
∂X̃i

∂Xj

∂Xj

∂X̃k

=
∂Xj

∂X̃i

∂Xj

∂X̃k

=
∂X̃i

∂Xj

∂X̃k

∂Xj

= δik. (1.8.24)
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1.8.8 Transformation rules in terms of coordinates

In terms of coordinate derivatives, the transformation rules derived pre-
viously in this section for the base vectors take the form

b̃i =
∂Xj

∂X̃i

bj =
∂X̃i

∂Xj

bj (1.8.25)

and

bi =
∂Xi

∂X̃j

b̃j =
∂X̃j

∂Xi
b̃j . (1.8.26)

The associated transformation rules for the vector components take the
form

c̃i =
∂Xj

∂X̃i

cj =
∂X̃i

∂X̃j

cj (1.8.27)

and

ci =
∂Xi

∂X̃j

c̃j =
∂X̃j

∂Xi

c̃j. (1.8.28)

When referring to the universal base, X can be written as x.

Exercise

1.8.1 Show that the outer product of two vectors is a first-order tensor.

1.9 Zeroth-order tensors

Assume that a particle is located at position x and another particle is
located at position y in N -dimensional space. The particle coordinates
in the universal Cartesian base are encapsulated in the N -dimensional
vectors

x =



x1
...
xN


 , y =



y1
...
yN


 . (1.9.1)
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The square of the distance between the two particles is

|x− y|2 = (x− y) · (x− y) = (xi − yi)(xi − yi), (1.9.2)

where summation is implied over the repeated index, i.

1.9.1 First base

The coordinates of the first particle in an arbitrary Cartesian base ei
are denoted by ci, and the coordinates of the second particle in the
same base are denoted by di, so that

x = ci ei, y = di ei. (1.9.3)

We find that

|x− y|2 = (ci − di) ei · (cj − dj) ej = (ci − di)(ci − di), (1.9.4)

where summation is implied over the repeated index, i.

1.9.2 Second base

The coordinates of the first particle in another arbitrary Cartesian base
ẽi are c̃i, and the coordinates of the second particle in the same base
are d̃i, so that

x = c̃i ẽi, y = d̃i ẽi. (1.9.5)

We find that

|x− y|2 = (c̃i − d̃i) ei · (c̃j − d̃j) ej = (c̃i − d̃i)(c̃i − d̃i), (1.9.6)

where summation is implied over the repeated index, i.

1.9.3 Invariance

Now using the component transformation rules

c̃i = Qij cj , d̃i = Qij dj, (1.9.7)

we find that

(c̃i − d̃i)(c̃i − d̃i) = Qij (cj − dj)Qim (cm − dm). (1.9.8)
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Rearranging, we obtain

(c̃i − d̃i)(c̃i − d̃i) = (cj − dj)Q
T
jiQim (cm − dm). (1.9.9)

Since the matrix Q is orthogonal, QT
jiQim = δjm, and thus

(c̃i − d̃i)(c̃i − d̃i) = (ci − di)(ci − di), (1.9.10)

which shows that the distance between the two particles predicted from
(1.9.6) is the same as that predicted from (1.9.4). We say that the
distance is a zeroth-order tensor.

A zeroth-order tensor is a scalar whose value is independent of the
chosen frame of reference. Examples are the inner product of two
vectors, the temperature of a point in a medium, but not necessarily
the color of a star.

Exercise

1.9.1 Show that the inner product of two vectors is a zeroth-order
tensor.

1.10 Matrix bases and matrix components

An M × N matrix is a collection of numbers arranged in a table with
M rows and N columns. An example is the 2× 3 matrix

T =

[
2 3 5
7 9 11

]
. (1.10.1)

In the case of a square matrix, M = N . In the case of a vertical array
matrix, N = 1. In the case of a horizontal array matrix, M = 1.

1.10.1 Matrix elements

The elements of a matrix, T, are denoted by Tij , where i = 1, . . . ,M
and j = 1, . . . , N . With reference to the matrix shown in (1.10.1),
T12 = 3 and T21 = 7. The total number of elements of an M × N
matrix isMN . The total number of elements of a square matrix is N2.
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We will refer to the elements of a matrix also as entries, but not
components. The term components will be reserved for the matrix
coefficients in a specified matrix base.

1.10.2 A matrix contains arrays

An M × N matrix can be regarded either as an ordered collection of
M horizontal N -dimensional arrays placed in its rows, or as an ordered
collection of N vertical M-dimensional arrays in its columns. This
interpretation leads us to the notion of second-order tensors defined as
matrices that obey appropriate coordinate or base transformation rules
based on those for the constituent vectors.

1.10.3 Expansion of a square matrix

Consider an arbitrary square N ×N matrix, T, and introduce a set of
N2 arbitrary N × N matrices, Bij for i, j = 1, . . . , N , comprising a
matrix base. Unless the base is chosen poorly, we will able to expand the
matrix T into a weighted sum using the usual rules of matrix algebra,

T =

N∑

i=1

N∑

j=1

Cij Bij, (1.10.2)

where Cij is a collection of N2 coefficients. Explicitly,

T = C11B11 + C12 B12 + · · ·+ CNN BNN . (1.10.3)

We recall that, to multiply a matrix by a scalar, we multiply each scalar
element. To add two or any number of matrices, we add corresponding
matrix elements.

1.10.4 Einstein summation convention

We recall the Einstein summation convention stipulating that if an in-

dex appears twice in a product, summation over that index is implied.

The same index may not appear more than twice. An index that ap-
pears once is a free index. Under the Einstein summation convention,
expansion (1.10.3) takes the simple form

T = CijBij, (1.10.4)
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where double summation is implied over the repeated indices, i and j,
in their entire range, i, j = 1, . . . , N .

1.10.5 Matrix transpose

The transpose of the matrix T, indicated by the superscript T, is given
by

TT = CijB
T
ij. (1.10.5)

Note that Cij = Cji does not guarantee that T is symmetric, that is,
T = TT.

1.10.6 Matrix elements v. matrix components

The N2 scalar coefficients, Cij , are the components of the matrix T

in the specified matrix base. By contrast, the numbers Tij are the
elements of the matrix T. The former can be arranged in a square
N × N component matrix, C, which is generally different than the
matrix T. Only if all elements of each base matrix Bij are zero, except
for the ij element that is equal to unity, is the component matrix C

identical to the given matrix T.

The component matrix C of a given matrix T depends on the
chosen matrix base, Bij. We will see that a real or complex matrix
base can be found where the component matrix C is diagonal.

1.10.7 Computation of matrix components

To compute the N2 matrix components, Cij, corresponding to a spec-
ified base, we enforce the matrix equation (1.10.4) for each matrix
element and derive a system of N2 linear equations.

As an example, we consider the 2× 2 matrix

T =

[
3 4
1 2

]
, (1.10.6)
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and introduce a matrix base consisting of four matrices,

B11 =
1

2

[
2 1
1 1

]
, B12 =

1

2

[
1 2
1 1

]
,

B21 =
1

2

[
1 3
2 4

]
, B22 =

1

2

[
1 1
1 2

]
. (1.10.7)

To compute the four components, Cij , we enforce the representation
(1.10.4) for each element of T and derive a system of four linear equa-
tions. The solution is computed by the following Matlab code named
base1, located in directory Tenbase of Tunlib:

RHS = [3 4 1 2];

MAT = 0.5*[ 2 1 1 1;

1 2 3 1;

1 1 2 1;

1 1 1 4];

SOL = RHS/MAT'

The prime in the last line of the code denotes the matrix transpose.
Running the code generates the following output:

0.2857 9.7143 -3.7143 -0.5714

Based on these results, we set

C11 = 0.2857, C12 = 9.7143,

C21 = −3.7143, C22 = −0.5714, (1.10.8)

and compile the component matrix corresponding to the specified base,

C =

[
0.2857 9.7143

−3.7143 −0.5714

]
. (1.10.9)

This matrix differs from the matrix T shown in (1.10.6).
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1.10.8 Object described by components

We may regard a given matrix T as an object, and the component
matrix C as the encapsulated attributes (fingerprint) of the object in
a specified matrix base representing a viewpoint. An object could be a
car in a dealer’s parking lot, and the components could the car’s parts
in the dealer’s service manual.

1.10.9 Expansions in different bases

Since a given matrix, T, has different component matrices, C, in dif-
ferent bases, we may write

T = Cij Bij = C̃ij B̃ij, (1.10.10)

where Cij are the components of T in the Bij base, C̃ij are the com-

ponents of T in the B̃ij base, and double summation is implied over
the repeated indices, i and j.

The base matrices can be related by a linear transformation involv-
ing appropriate coefficients, Aijkℓ,

Bij = Aijkℓ B̃kℓ, (1.10.11)

where double summation is implied over the repeated indices, k and ℓ.
Substituting this expression into (1.10.10), we obtain

CijAijkℓBkℓ = C̃kℓBkℓ, (1.10.12)

which shows that

C̃kℓ = Cij Aijkℓ, (1.10.13)

where k and ℓ are free indices and double summation is implied over
the repeated indices, i and j.

1.10.10 Second-order tensors in terms of base components

If the components of a matrix conform with the transformation rule
(1.10.13), then the matrix is accepted as a second-order tensor. Ex-
amples will be given later in this chapter with reference to a pair of
Cartesian bases.
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Exercises

1.10.1 Propose a base suitable for a 2× 3 matrix.

1.10.2 Compute the components of the matrix T given in (1.10.6) for
a base consisting of the matrices

[Bij]kℓ =
√
k + i/ ln(ℓ+ j), (1.10.14)

where [Bij]kℓ is the kℓ element of Bij.

1.11 Dyadic matrix base

We may select N linearly independent N -dimensional arrays,

b1,b2, . . . ,bN , (1.11.1)

and formulate a matrix base as a dyadic product,

Bij = bi ⊗ bj , (1.11.2)

where ⊗ denotes the dyadic product. This notation means that

[Bij ]kℓ = [bi]k × [bj]ℓ, (1.11.3)

where [Bij]kℓ is the kℓth element of Bij, [bi]k is the kth element
of bi, [bj ]ℓ is the ℓth element of bj , and × denotes regular scalar
multiplication. The dyadic product is also known as the tensor product
or Cartesian product, as discussed in Section 1.6.

As an example, we choose the vectors b1 = [1, 0] and b2 = [1, 1],
and formulate the dyadic matrix base

B11 =

[
1 0
0 0

]
, B12 =

[
1 1
0 0

]
,

(1.11.4)

B21 =

[
1 0
1 0

]
, B22 =

[
1 1
1 1

]
.
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Because b1 and b2 are linearly independent, this is a perfectly accept-
able base.

1.11.1 Dyadic expansion

The general decomposition (1.10.3) of an N × N matrix, T, subject
to the dyadic base defined in (1.11.2) takes the form

T = Cij bi ⊗ bj , (1.11.5)

where summation is implied over the repeated indices, i and j.

1.11.2 Matrix transpose

The matrix transpose is given by the expansion

TT = Cji bi ⊗ bj . (1.11.6)

When Cij = Cji, the matrix T is symmetric. When Cij = −Cji, the
matrix T is antisymmetric.

1.11.3 Computation of matrix components

To compute the matrix components, Cij , we may enforce the repre-
sentation (1.11.5) for each element of T and derive a system of linear
equations. As an example, we consider the 2× 2 matrix

T =

[
3 4
1 2

]
(1.11.7)

and adopt the base stated in (1.11.4). The solution of the linear system
is computed by the following Matlab code named base2, located in
directory Tenbase of Tunlib:

RHS = [3 4 1 2];

MAT = [ 1 1 1 1;

0 1 0 1;

0 0 1 1;

0 0 0 1];

SOL = RHS/MAT'
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The prime in the last line of the code denotes the matrix transpose.
Running the code generates the following output:

0 2 -1 2

Based on these results, we set

C11 = 0, C12 = 2, C21 = −1, C22 = 2, (1.11.8)

and formulate the component matrix

C =

[
0 2

−1 2

]
, (1.11.9)

which differs from the matrix T shown in (1.10.6). If we had chosen
b1 = [1, 0] and b2 = [0, 1], we would have found that C = T.

A more general inclusive Matlab code named base3, located in
directory Tenbase of Tunlib, reads:

RHS = [3 4 1 2];

b1(1) = 1.0; b1(2) = 0.0;

b2(1) = 1.0; b2(2) = 1.0;

MAT = ...

...

[ b1(1)*b1(1) , b1(1)*b2(1) , b2(1)*b1(1) , b2(1)*b2(1);

b1(1)*b1(2) , b1(1)*b2(2) , b2(1)*b1(2) , b2(1)*b2(2);

b1(2)*b1(1) , b1(2)*b2(1) , b2(2)*b1(1) , b2(2)*b2(1);

b1(2)*b1(2) , b1(2)*b2(2) , b2(2)*b1(2) , b2(2)*b2(2)];

SOL = RHS/MAT'

The dyadic products are implemented directly into this code.

1.11.4 Components by projection

In an alternative formulation, we project the expansion (1.11.5) from
the left onto bm, where m is a free index, and obtain

bm ·T = bmi Cij bj , (1.11.10)
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where summation is implied over the repeated indices i and j, and

bmi ≡ bm · bi (1.11.11)

are base vector projections called metric coefficients. In index notation,
equation (1.11.11) takes the form

bmi = [bm]k[bi]k, (1.11.12)

where summation is implied over the repeated index, k. In index nota-
tion, equation (1.11.10) takes the form

[bm]k [T]kℓ = bmi Cij [bj]ℓ, (1.11.13)

where ℓ is a free index and summation is implied over the repeated
indices i, j, and k.

Projecting expansion (1.11.5) from the right onto bm, we obtain
the companion equation

T · bm = bjmCij bi, (1.11.14)

where m is a free index.

Now projecting (1.11.10) onto bn, we obtain

bm ·T · bn = bmi bjn Cij, (1.11.15)

where n is a free index. Projecting also (1.11.14) onto bn, where n is
a free index, we obtain

bn ·T · bm = bjm bni Cij, (1.11.16)

which is nothing but (1.11.15) with the indices m and n transposed.

Applying (1.11.15) for m,n = 1, . . . , N provides us with a system
of linear equations for the elements of the component matrix, Tij . For
example, for N = 2, m = 1, and n = 1, we obtain

b1 ·T · b1 = b11 b11 C11 + b11 b12 C12 + b12 b11 C21 + b12 b12C22,

(1.11.17)
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involving all elements of the component matrix, C.

1.11.5 base4

The following Matlab code named base4, located in directory Ten-

base of Tunlib, compiles and solves the linear system:

T = [3 4; 1 2];

b1(1) = 1.0; b1(2) = 0.0; % base arrays (arbitrary)

b2(1) = 1.0; b2(2) = 1.0; % base arrays (arbitrary)

%---

% metric tensor

%---

bmet(1,1) = b1*b1'; bmet(1,2) = b1*b2';

bmet(2,1) = b2*b1'; bmet(2,2) = b2*b2';

G = bmet;

%---

% system is MAT * SOL = RHS

%---

RHS(1) = b1*T*b1'; RHS(2) = b1*T*b2';

RHS(3) = b2*T*b1'; RHS(4) = b2*T*b2';

MAT(1,1) = G(1,1)*G(1,1); MAT(1,2) = G(1,1)*G(2,1);

MAT(1,3) = G(1,2)*G(1,1); MAT(1,4) = G(1,2)*G(2,1);

MAT(2,1) = G(1,1)*G(1,2); MAT(2,2) = G(1,1)*G(2,2);

MAT(2,3) = G(1,2)*G(1,2); MAT(2,4) = G(1,2)*G(2,2);

MAT(3,1) = G(2,1)*G(1,1); MAT(3,2) = G(2,1)*G(2,1);

MAT(3,3) = G(2,2)*G(1,1); MAT(3,4) = G(2,2)*G(2,1);

MAT(4,1) = G(2,1)*G(1,2); MAT(4,2) = G(2,1)*G(2,2);

MAT(4,3) = G(2,2)*G(1,2); MAT(4,4) = G(2,2)*G(2,2);

SOL = RHS/MAT'
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Running the code generates the following expected output:

0 2 -1 2

which is consistent with data obtained previously using a different
method. The advantages of this formulation will be discussed in Section
1.3 with reference to a Cartesian matrix base.

Exercise

1.11.1 Compute the components of the matrix T given in (1.10.6) for
a dyadic matrix base with b1 = [1, 0.1] and b2 = [0.1, 1].

1.12 Cartesian tensor base

Assume that the dyadic base arrays are orthonormal, denoted by bi = ei
for i = 1, . . . , N , where |ei| = 1 and ei · ej = 0 if i 6= j so that

ep · eq = δpq, (1.12.1)

where δpq is Kronecker’s delta: δpq = 1 if p = q or 0 otherwise. Con-
sequently, b is the identity matrix, I.

1.12.1 Cartesian dyadic matrix base

The corresponding dyadic matrix base, Bij, is a Cartesian matrix base

denoted by

Eij = ei ⊗ ej. (1.12.2)

By definition, the kℓ element of Eij is given by

[Eij]kℓ = [ei]k × [ej ]ℓ, (1.12.3)

where × denotes regular scalar multiplication. Note that

Eij = ET
ji, (1.12.4)

where the superscript T denotes the transpose.
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For example, in three dimensions, N = 3, we may choose

e1 =
1√
2




1
1
0


 , e2 =

1√
2




−1
0
0


 , e3 =




0
0
1


 , (1.12.5)

to find that

E11 =
1

2




1 1 0
1 1 0
0 0 0


 , E12 =

1

2




−1 0 0
−1 0 0
0 0 0


 , (1.12.6)

and seven other dyadic base matrices. Note that the dyadic base ma-
trices are not necessarily sparse.

1.12.2 Cartesian matrix components

Because of (1.12.1), equation (1.11.15) provides us with an explicit
expression for the matrix components,

Cmn = em ·T · en = T : (em ⊗ en). (1.12.7)

The computation of the first expression requires a matrix-vector fol-
lowed by a vector–vector multiplication.

1.12.3 Identity matrix

The identity matrix, I, is distinguished by the property that I · a = a,
for any vector, a. We may confirm readily that the components of the
identity matrix in any Cartesian base are Cmn = δmn, Consequently,

I = Eii ≡ E11 + · · ·+ ENN = ei ⊗ ei, (1.12.8)

where summation is implied over the repeated index, i.

1.12.4 Confirmation by code

The following Matlab code named cartesian, located in directory Ten-

car of Tunlib, displays a Cartesian dyadic base and confirms identity
(1.12.8) in two dimensions:
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%---

% construct a 2x2 Cartesian base

%---

theta1 = 0.2345*pi; % arbitrary

theta2 = theta1+0.5*pi; % orthogonal

e1(1) = cos(theta1); e1(2) = sin(theta1);

e2(1) = cos(theta2); e2(2) = sin(theta2);

for i=1:2

for j=1:2

E11(i,j) = e1(i)*e1(j);

E12(i,j) = e1(i)*e2(j);

E21(i,j) = e2(i)*e1(j);

E22(i,j) = e2(i)*e2(j);

end

end

%---

% display the base

%---

[E11 E12]

[E21 E22]

%---

% Identity matrix

%---

E11+E22

Running the code generates the following output:

0.5486 0.4976 -0.4976 0.5486

0.4976 0.4514 -0.4514 0.4976

-0.4976 -0.4514 0.4514 -0.4976

0.5486 0.4976 -0.4976 0.5486
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1.0000 0

0 1.0000

The last two lines represent the 2× 2 identity matrix.

1.12.5 Double-dot product

The double-dot product of two matrices, T and S, is a scalar defined
as

T : S ≡ trace(TT · S) = trace(T · ST), (1.12.9)

where the superscript T denotes the matrix transpose. Substituting

T = Cij ei ⊗ ej , S = Dpq ep ⊗ eq, (1.12.10)

we find that

TT · S = CjiDpq (ei ⊗ ej) · (ep ⊗ eq) = CjiDjq (ei ⊗ eq).

(1.12.11)

Since trace(ei ⊗ eq) = δiq, we conclude that

T : S = CjiDji, (1.12.12)

where summation is implied over the repeated indices, i and j.

1.12.6 Universal Cartesian base

In the universal Cartesian base, ei = ǫi, where all entries of ǫi are zero,
except for the ith entry that is equal to 1. In three dimensions,

ǫ1 =




1
0
0


 , ǫ2 =




0
1
0


 , ǫ3 =




0
0
1


 . (1.12.13)

The associated dyadic Cartesian base is described by nine matrices,
where all elements of each matrix is zero, except for one element that
is equal to unity. For example,

E11 =




1 0 0
0 0 0
0 0 0


 , E12 =




0 1 0
0 0 0
0 0 0


 . (1.12.14)
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In the universal Cartesian base, and only then, C = T. We may
then identify the matrix T with the component matrix in the universal
Cartesian frame.

Exercise

1.12.1 Derive the expressions shown in (1.12.7).

1.13 Change of Cartesian base

Consider an arbitrary Cartesian base with base vectors ei for i =
1, . . . N , and another arbitrary Cartesian base with base vectors ẽi for
i = 1, . . . N , as discussed in Section 1.8.

The components of an N×N matrix T in the corresponding dyadic
bases are given by

Cmn = em ·T · en, C̃mn = ẽm ·T · ẽn (1.13.1)

in terms of Cartesian unit vector projections. We will show that the
two sets of components are related by a simple relation underlying the
notion of a tensor.

1.13.1 Transformation matrix

The tilded base arrays are related to the untilded arrays by a linear
transformation,

ẽi = Qij ej , (1.13.2)

where summation is implied over the repeated index j and the elements
of a transformation matrix, Q, are given by

Qij ≡ ẽi · ej, (1.13.3)

as discussed in Section 1.8. Projecting (1.13.2) onto ẽm, we obtain

δim = Qij Q
T
jm, (1.13.4)
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where m is a free index, δim is Kronecker’s delta, and the superscript
T denotes the matrix transpose. This relation shows that the transfor-
mation matrix is orthogonal,

Q−1 = QT, (1.13.5)

where the superscript −1 denotes the matrix inverse. Consequently,

ei = Qji ẽj (1.13.6)

The determinant of Q is equal to unity, as discussed in Section 1.8.

1.13.2 Matrix component transformation

To relate the two sets of components, we introduce the double expan-
sion

T = Cij ei ⊗ ej = C̃ij ẽi ⊗ ẽj, (1.13.7)

where summation is implied over the repeated indices, i and j. Pro-
jecting this expansion from the left onto ẽm, where m is a free index,
we obtain

ẽm ·T = Cij (ẽm · ei)bj = C̃ij (ẽm · ẽi) ẽj, (1.13.8)

which amounts to

ẽm ·T = Cij Qmi bj = C̃mj ẽj . (1.13.9)

Projecting (1.13.9) onto ẽn, where n is another free index, we obtain

ẽm ·T · ẽn = Cij QmiQnj = C̃mn. (1.13.10)

We have found that

C̃mn = QmiCijQ
T
jn, C̃ = Q ·C ·QT. (1.13.11)

Working in a similar fashion, we obtain

Cmn = QT
miC̃ijQjn, C = QT · C̃ ·Q, (1.13.12)

which confirms further that the transformation matrix Q is orthogonal,
that is, its inverse is equal to its transpose.
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The components of T encapsulated in C̃ can be computed in two
ways: (a) directly based on (1.13.1) or (b) indirectly in terms C based
on (1.13.11). The results will be identical.

1.13.3 Confirmation by code

Confirmation is provided by the following Matlab code named tensor,
located in directory Tensor of Tunlib, for a 2× 2 matrix:

%---

% two bases, A and B, rotated by thA and thB

% in a plane

%---

thA = 0.034*pi; % arbitrary

thB = 0.245*pi; % arbitrary

eA1(1) = cos(thA); eA1(2) = sin(thA);

eA2(1) =-eA1(2); eA2(2) = eA1(1);

eB1(1) = cos(thB); eB1(2) = sin(thB);

eB2(1) =-eB1(2); eB2(2) = eB1(1);

%---

% transformation matrix

%---

Q(1,1) = eB1(1)*eA1(1) + eB1(2)*eA1(2);

Q(1,2) = eB1(1)*eA2(1) + eB1(2)*eA2(2);

Q(2,1) = eB2(1)*eA1(1) + eB2(2)*eA1(2);

Q(2,2) = eB2(1)*eA2(1) + eB2(2)*eA2(2);

%---

% confirm orthogonality

%---

[Q' inv(Q)]

det(Q)
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%---

% tensor

%---

T = [ 1 2;

3 4];

%---

% A components

%---

TA(1,1) = eA1*T*eA1'; TA(1,2) = eA1*T*eA2';

TA(2,1) = eA2*T*eA1'; TA(2,2) = eA2*T*eA2';

%---

% B components

%---

TB(1,1) = eB1*T*eB1'; TB(1,2) = eB1*T*eB2';

TB(2,1) = eB2*T*eB1'; TB(2,2) = eB2*T*eB2';

%---

% print

%---

[Q; TA; TB; Q*TA*Q']

Running the code generates the following output:

Q' and inv(Q)

0.7882 -0.6154 0.7882 -0.6154

0.6154 0.7882 0.6154 0.7882

det(Q)

1.0000

Q TA TB Q*TA*Q'

0.7882 0.6154 1.5641 2.2612 4.9517 1.0778
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4.9517 1.0778

-0.6154 0.7882 3.2612 3.4359 2.0778 0.0483

2.0778 0.0483

The fifth and sixth pairs of columns are identical to the seventh and
eighth pairs of columns generated by a transformation.

1.13.4 Similarity transformation

Equations (1.13.11) and (1.13.12) express similarity transformations

between two matrices, C and C̃. This means that the characteristic
polynomial, and thus the eigenvalues, the determinant, and the trace
of C and C̃ are the same,

trace(C) = trace(C̃), det(C) = det(C̃), (1.13.13)

where the trance is sum of the diagonal elements.

1.13.5 Identity tensor

The identity matrix, I, is distinguished by the property that I · a = a,
for any vector, a. We may readily confirm that Cmn = δmn, and
C̃mn = δmn, which demonstrates that I is a tensor,

I = ei ⊗ ei = ẽi ⊗ ẽi, (1.13.14)

where summation is implied over the repeated index, i.

1.13.6 Transformation in terms of coordinates

Using the expressions derived in Section 1.8.7 for the transformation
matrix Q, we find that the transformation rule (1.13.11) takes the form

C̃mn =
∂X̃m

∂Xi

∂X̃n

∂Xj

Cij =
∂Xi

∂X̃m

∂X̃n

∂Xj

Cij

=
∂X̃m

∂Xi

∂Xj

∂X̃n

Cij =
∂Xi

∂X̃m

∂Xj

∂X̃n

Cij . (1.13.15)
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The inverse transformation rule (1.13.12) takes the form

Cmn =
∂X̃i

∂Xm

∂X̃j

∂Xn
C̃ij =

∂Xm

∂X̃i

∂X̃j

∂Xn
C̃ij

=
∂X̃i

∂Xm

∂Xn

∂X̃j

C̃ij =
∂Xm

∂X̃i

∂Xn

∂X̃j

C̃ij . (1.13.16)

Exercise

1.13.1 Compute the transformation matrix Q when ei = ǫi is the
universal Cartesian base.

1.14 Second-order tensors

Let the base arrays ei define a Cartesian system inN -dimensional space,
and the base arrays ẽi define another Cartesian system.

1.14.1 Two sets of measurements

Suppose that a measurement of a physical multi-scalar quantity, such
as stress, is taken in the the first system and the recording is placed
in a component matrix, C. Suppose also that a measurement of the
same physical quantity is taken in the second system and the recording
is placed in another component matrix, C̃.

The two measurements must be related by (1.13.11) and (1.13.12),
repeated below for convenience,

C̃ = Q ·C ·QT, C = QT · C̃ ·Q, (1.14.1)

where the superscript T denotes the matrix transpose and Q is the
pertinent orthogonal transformation matrix. If they are, the physical
quantity possesses the attribute of a second-order tensor.

If a two-index entity does not obey the transformation test expressed
by (1.13.11) and (1.13.12), then it is not a tensor and should not be
used in physical frameworks.
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Figure 1.14.1 Stresses exerted at the surface of a small rectangular
block of a fluid or solid in two coordinate systems. The stress
components in the two systems are indicated by arrows.

1.14.2 Stress tensor

The terminology tensor can be traced to solid mechanics where materi-
als are subjected to forces or deformation, and thereby develop internal
stresses. The name tensor derives from the word tension (force per
length), which is similar to stress (force per area)

The stress tensor in two dimensions encapsulates four stresses de-
noted by 11, 12, 21, and 22, as shown in Figure 1.14.1, where 11 and
22 are normal stresses and 12 and 21 are shear stresses. One set of
measurements can be taken in the e1e2 system by a stress meter, and
another set of measurements is taken in the ẽ1ẽ2 system by a rotated
stress meter. In the absence of instrumentation error, the two sets of
stress measurements must be related by (1.13.11) and (1.13.12).

1.14.3 Mohr transformation

In two dimensions, if the tilde system arises by rotating the untilded
system around the origin by angle ̺, then

Q ≡
[

cos ̺ sin ̺
− sin ̺ cos ̺

]
, (1.14.2)

according to the Mohr transformation. Applying (1.14.1), we find that

C̃ =

[
cos ̺ sin ̺

− sin ̺ cos ̺

]
·C ·

[
cos ̺ − sin ̺
sin ̺ cos ̺

]
. (1.14.3)
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Carrying out the multiplications for C12 = C21, we obtain

C̃11 = cos2 ̺C11 + sin2 ̺C22 + sin 2̺C12,

C̃12 = sin ̺ cos ̺ (C22 − C11) + cos 2̺C12, (1.14.4)

C̃22 = sin2 ̺C11 + cos2 ̺C22 − sin 2̺C12.

Measurements of C̃ij and Cij must be consistent with these equations.

1.14.4 Tensor rule for the vector tensor product

An arbitrary vector, v, may be expanded in two Cartesian bases in terms
of its components in the two systems as

v = cj ej = c̃j ẽj . (1.14.5)

Another arbitrary vector, u, may be expanded similarly as

u = dj ej = d̃j ẽj. (1.14.6)

The tensor product of these vectors is a matrix,

T = u⊗ v, (1.14.7)

with elements Tij = viuj, where vi and uj are the vector components
in the universal Cartesian base, ǫm. We will confirm that T is a tensor.

Using the aforementioned expansions, we find that

T = ci dj ei ⊗ ej = c̃i d̃j ẽi ⊗ ẽj . (1.14.8)

The products

Cij ≡ ci dj (1.14.9)

are the components of T in the Eij ≡ ei ⊗ ej base, and the products

C̃ij ≡ c̃i d̃j (1.14.10)

are the components of T in the Ẽij ≡ ẽi ⊗ ẽj base. We may write

T = Cij Eij = C̃ij Ẽij, (1.14.11)
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where summation is implied over the repeated indices i and j.

Using the vector transformation rules (1.8.13), repeated below for
convenience,

c̃ = Q · c, c = QT · c̃,
d̃ = Q · d, d = QT · d̃, (1.14.12)

we find that

C̃ij ≡ c̃i d̃j = (Qikck)(Qjmdm). (1.14.13)

Rearranging the products on the right-hand side, we obtain

C̃ij = Qik ck dmQjm = Qik CkmQjm. (1.14.14)

In matrix notation, this equation takes the form

C̃ = Q ·C ·QT, (1.14.15)

where the superscript T denotes the matrix transpose, thereby confirm-
ing by definition that the tensor product of two Cartesian vectors is a
two-index or Cartesian tensor.

1.14.5 Second moment-of-inertia tensor

Consider a point-particle located at position x so that

x = Xi ei, (1.14.16)

where Xi are the particle coordinates in a Cartesian system with base
vectors ei whose origin coincides with that the universal base. The
second-moment of inertia tensor is defined as mJ, where m is the
particle mass,

J ≡ |X|2 I−X⊗X, (1.14.17)

where |X|2 = X2
1 +X2

2 +X2
3 is the distance from the origin and

X⊗X =




X2
1 X1X2 X1X3

X2X1 X2
2 X2X3

X3X1 X3X2 X2
3


 , (1.14.18)
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In index notation,

Jij = δij |X2| −XiXj. (1.14.19)

We will demonstrate that J is a tensor for any two Cartesian systems
that share an origin, so that

X̃i = Qij Xj . (1.14.20)

To carry out the proof, we write

J̃ij = δij X̃pX̃p − X̃iX̃j (1.14.21)

and then

J̃ij = δij (QpmXm)(QpnXn)− (QimXm) (QjnXn). (1.14.22)

Rearranging, we obtain

J̃ij = δij Q
T
mpQpnXmXn −Qim(XmXn)Qjn. (1.14.23)

Noting that QT
mpQpn = δmn, we obtain

J̃ij = δij XqXq −Qim(XmXn)Qjn. (1.14.24)

Finally, we use the orthogonality of the transformation matrix to write

J̃ij = Qim (δij |X|2 −XmXn)Qjn. (1.14.25)

which demonstrates the tensorial nature of J.

In contrast, an entity N whose components in a certain Cartesian
system are

Nij = (−1)i+jXiXj (1.14.26)

is not a tensor. Consequently, the matrixN cannot be used in a physical
framework that passes the test of frame invariance.
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1.14.6 Momentum tensor

Consider a point particle with mass m moving in space with velocity
u. We may resolve

u = Ui ei, (1.14.27)

where Ui are the velocity components in a coordinate system with base
vectors ei. Working as previously in this section, we may confirm that
the momentum tensor, M, with components

Mij = mUiUj (1.14.28)

is a tensor. In fact, the tensorial nature ofM becomes evident by noting
that M is the tensor product of two identical vectors, L = u⊗ u.

1.14.7 Proportionality tensors

If v is a vector and u is another vector arising from u by the transfor-
mation

u = T · v, (1.14.29)

then the matrix T is a tensor. To demonstrate this, we write

ũ = T̃ · ṽ (1.14.30)

for a tilded coordinate system, and then

A · u = T̃ ·A · v, (1.14.31)

which suggests that T = AT · T̃ ·A, and thereby confirms that T is a
tensor.

In fluid and solid mechanics, the vector u can be the traction, v
can be a vector normal to a surface, and T can be the Cauchy stress
tensor.

1.14.8 Velocity gradient tensor

The velocity-gradient tensor is the gradient of a velocity field, u, defined
as

L ≡ ∇u, (1.14.32)



D
R
A
F
T

1.15 High-order tensors 63

where Lij = ∂uj/∂xi. We may resolve u = Ui(x) ei and expand

L =
∂Uj

∂Xi
ei ⊗ ej, (1.14.33)

where Ui are the velocity components and Xi are the coordinates in a
Cartesian system with base vectors ei. Now using the chain rule, we
write

∂Ũj

∂X̃i

=
∂(Qjk Uk)

∂X̃i

= Qjk
∂Uk

∂Xp

∂Xp

∂X̃i

. (1.14.34)

Equation (1.8.22) identifies the last fraction on the right-hand side with
Qip, yielding

∂Ũj

∂X̃i

= Qip
∂Uk

∂Xp

QT
kj , (1.14.35)

in accordance with the rules of a second-order tensor.

Exercise

1.14.1 Show that the transpose of a tensor is also a tensor.

1.15 High-order tensors

High-order tensors are defined similarly to second-order tensors dis-
cussed previously in this chapter.

A third-order tensor admits the representation

T = Cijk ei ⊗ ej ⊗ ek, (1.15.1)

where Cijk are the tensor components in a chosen Cartesian base, ei,
given by

Cijk = (ei ·T · ek) · ej . (1.15.2)

In double-dot product notation,

Cijk = ei · (T : ej ⊗ ek). (1.15.3)
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The double tensor products, ei ⊗ ej ⊗ ek constitute a triadic base
parametrized by three indices.

1.15.1 Universal Cartesian base

Referring to the universal Cartesian base, we set ei = ǫi and find that
all elements of the matrix ǫi ⊗ ǫj ⊗ ǫk are zero, except for the ijk
element that is equal to unity. Consequently,

T = Tijk ǫi ⊗ ǫj ⊗ ǫk. (1.15.4)

All elements of the three-index matrix ǫi ⊗ ǫj ⊗ ǫk are zero, expect for
the ijk element that is equal to unity.

The transformation rule for a tilded Cartesian base is

C̃mnℓ = QmiQnjQℓk Cijk, (1.15.5)

where Q is the relevant orthogonal transformation matrix and summa-
tion is implied over three repeated indices.

Exercise

1.15.1 Derive the transformation rule (1.15.5).

1.16 Alternating tensor

The three-index alternating tensor is defined by the expansion

ξ = ǫijk ei ⊗ ej ⊗ ek, (1.16.1)

where ǫijk is the Levi–Civita (LC) symbol introduced in Section 1.5.
Since

ǫijk = (ei × ej) · ek, (1.16.2)

we may write

ξ =
(
(ei × ej) · ek

)
ei ⊗ ej ⊗ ek. (1.16.3)
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The expression inside the outer parentheses is the triple mixed scalar
product.

Consequently, the components of ξ are equal to the elements of ξ,

ξijk = ǫijk (1.16.4)

in any Cartesian base.

1.16.1 Base transformation

Any orthogonal matrix with unit determinant, Q, satisfies the identity

ǫmnℓ = QmiQnjQℓk ǫijk. (1.16.5)

Because of this identity, we may also write

ξ = ǫijk ẽi ⊗ ẽj ⊗ ẽk, (1.16.6)

which confirms that the components of ξ remain constant in any Carte-
sian base.

The following Matlab code entitled levciv1, located in directory
Vecar of Tunlib, generates two Cartesian bases and confirms iden-
tity (1.16.5):

%----

% Cartesian base vectors A

% generated by random rotations

%----

th1 = rand*2.0*pi;

th2 = rand*2.0*pi;

th3 = rand*2.0*pi;

R1 = [1,0,0;

0, cos(th1),sin(th1);

0,-sin(th1),cos(th1)];

R2 = [cos(th2),0,-sin(th2);



DR
AF
T

66 Tensors Unravelled, C. Pozrikidis, © 2026

0,1,0;

sin(th2),0,cos(th2)];

R3 = [ cos(th3),sin(th3),0;

-sin(th3),cos(th3),0;

0,0,1];

RA = R3*R2*R1;

for i=1:3

eA1(i) = RA(i,1);

eA2(i) = RA(i,2);

eA3(i) = RA(i,3);

end

%----

% Cartesian base vectors B

% generated by random rotations

%----

th1 = rand*2.0*pi;

th2 = rand*2.0*pi;

th3 = rand*2.0*pi;

R1 = [1,0,0;

0, cos(th1),sin(th1);

0,-sin(th1),cos(th1)]

R2 = [cos(th2),0,-sin(th2);

0,1,0;

sin(th2),0,cos(th2)];

R3 = [ cos(th3),sin(th3),0;

-sin(th3),cos(th3),0;

0,0,1];

RB = R3*R2*R1;

for i=1:3
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eB1(i) = RB(i,1);

eB2(i) = RB(i,2);

eB3(i) = RB(i,3);

end

%---

% transformation matrix

%---

Q(1,1) = eB1(1)*eA1(1) + eB1(2)*eA1(2) + eB1(3)*eA1(3);

Q(1,2) = eB1(1)*eA2(1) + eB1(2)*eA2(2) + eB1(3)*eA2(3);

Q(1,3) = eB1(1)*eA3(1) + eB1(2)*eA3(2) + eB1(3)*eA3(3);

Q(2,1) = eB2(1)*eA1(1) + eB2(2)*eA1(2) + eB2(3)*eA1(3);

Q(2,2) = eB2(1)*eA2(1) + eB2(2)*eA2(2) + eB2(3)*eA2(3);

Q(2,3) = eB2(1)*eA3(1) + eB2(2)*eA3(2) + eB2(3)*eA3(3);

Q(3,1) = eB3(1)*eA1(1) + eB3(2)*eA1(2) + eB3(3)*eA1(3);

Q(3,2) = eB3(1)*eA2(1) + eB3(2)*eA2(2) + eB3(3)*eA2(3);

Q(3,3) = eB3(1)*eA3(1) + eB3(2)*eA3(2) + eB3(3)*eA3(3);

%---

% confirm transformation

%---

for m=1:3

for n=1:3

for l=1:3

ssm = 0.0;

for i=1:3

for j=1:3

for k=1:3

ijk = (i-j)*(j-k)*(k-i)/2;

inc = Q(m,i)*Q(n,j)*Q(l,k)*ijk;

ssm = ssm + inc;

end

end

end

mnl = (m-n)*(n-l)*(l-m)/2; % levi-civita symbol
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if(abs(mnl)>0.0001)

[mnl ssm]

end

end

end

end

Running the code prints doublets of (1, 1) or (−1,−1).

1.16.2 Representation in terms of an arbitrary trio of vectors

Let a(1), a(2), and a(3) be three arbitrary vectors arranged at the three
columns of a matrix, A so that first column of A is a(1), the second
column is a(2), and the third column is a(3). The alternating tensor
admits the representation

ξ = ǫijk
1

det(A)
a(i) ⊗ a(j) ⊗ a(k), (1.16.7)

where

det(A) = u · (v ⊗w) ≡ [a(1), a(2), a(3)] (1.16.8)

is the triple mixed product representing the volume of a parallelepiped
whose sides are defined by a(1), a(2), and a(3). Cyclic permutation of the
three vectors preserves the triple mixed product; non-cyclic permutation
preserves the magnitude but changes the sign.

The following Matlab code entitled levciv2, located in directory
Vecar of Tunlib, confirms this expansion:

%---

% three arbitrary vectors

%---

a1 = [ 1.3, 4.2, 4.6];

a2 = [ 0.3, 2.1, 1.2];

a3 = [-0.3,-8.1, 0.1];

%---
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% put vectors in a matrix

%---

A = [a1(1), a2(1), a3(1);

a1(2), a2(2), a3(2);

a1(3), a2(3), a3(3)];

%---

% sum

%---

for p=1:3

for q=1:3

for m=1:3

xi(p,q,m) = 0.0;

for i=1:3

for j=1:3

for k=1:3

ijk = (i-j)*(j-k)*(k-i)/2;

xi(p,q,m) = xi(p,q,m) + ijk*A(p,i)*A(q,j)*A(m,k);

end

end

end

end

end

end

xi = xi/det(M);

xi

Running the code generates the following output, as instructed by the
last line of the code:

xi(:,:,1) =

0 0.0000 -0.0000

0 0 1.0000

0 -1.0000 0.0000

xi(:,:,2) =

-0.0000 -0.0000 -1.0000
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0.0000 0 0

1.0000 0 -0.0000

xi(:,:,3) =

0 1.0000 0

-1.0000 0 -0.0000

0 0.0000 0

1.16.3 Cross product of two vectors

The cross or outer product of an ordered pair of vectors, v and u, is
another vector given by

w ≡ v × u = ξ : (v ⊗ u), (1.16.9)

where : denotes the double-dot product. To demonstrate this relation,
we expand v = cp ep and u = dq eq, and find that

w = ǫijk (ei ⊗ ej ⊗ ek) : (cpdq e
p ⊗ eq), (1.16.10)

which can be restated as

w = ǫijkcpdq (ei ⊗ ej ⊗ ek) : (e
p ⊗ eq), (1.16.11)

and then

w = ǫijk cjdk ei = ǫijk cjdk ei, (1.16.12)

which reproduces expression (1.5.17).

Exercise

1.16.1 Confirm that the matrices RA and RB in the code levciv1 are
orthogonal. What is the determinant of these matrices?
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Biorthogonal bases

Biorthogonal vector and tensor bases discussed in this chapter are con-
structed in terms of a specified collection of vectors and another specific
collection of vectors that satisfy conjugate orthogonality conditions.
The main advantage of using dual coordinates is that vector and tensor
components in one base can be extracted efficiently using the conjugate
base, and this considerably simplifies theoretical derivations numerical
computation.

The study of biorthogonal bases serves as a natural introduction to
the apparatus of contravariant and covariant coordinates whose base
vectors generally vary with position in space.

2.1 Biorthogonal vector bases

Consider an arbitrary set of N linearly independent N -dimensional vec-
tors, denoted by

b1,b2, . . . ,bN , (2.1.1)

and introduce another set of N conjugate of dual linearly independent
N -dimensional vectors, denoted by

b1,b2, . . . ,bN , (2.1.2)

with the property that

bi · bj = 0 if i 6= j. (2.1.3)

The scalar self-product, bi ·bi can be arbitrary. An example in a plane,
N = 2, is shown in Figure 2.1.1.

71
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90

90

α

b
1

b2

b
1

2
b

Figure 2.1.1 Illustration of conjugate vector bases, (b1,b2) and
(b1,b2), in two-dimensional space. The base vectors satisfy the
orthogonality property (2.1.3). When the angle α between b1

and b2 is equal to π/2, the two bases are parallel.

2.1.1 Covariant and contravariant bases

By convention, the first set of vectors, bi, is called covariant, and the
second set of vectors, bi, is called contravariant. This terminology and
the subscript/superscript notation stems from the theory of curvilinear
coordinates, as discussed in subsequent chapters.

2.1.2 Biorthogonal projections

For future reference, we define the corresponding biorthogonal projec-
tions,

ω(i) ≡ bi · bi (2.1.4)

for i = 1, . . . , N , where summation is not implied over the repeated
index, i. In the following discussion, the superscript (i) of ω(i) is not to
be interpreted as an index; that is, the Einstein summation convention
will not apply for this parenthesized superscript.

In the event that the two sets, bi and bi are biorthonormal, ω(i) = 1
for any i. Biorthonormal sets are employed in the apparatus of con-
travariant and covariant coordinates introduced in Chapters 4 and dis-
cussed in subsequent chapters.
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The orthogonality condition (2.1.3), combined with the definition
(2.1.4), allows us to write

bi · bj = ω(i) δij, (2.1.5)

where δij is Kronecker’s delta representing the identity matrix: δij = 1
if i = j, or 0 otherwise.

2.1.3 Matrices of base vectors

The components of the covariant set, bi, can be arranged at the
columns of a matrix, F, and those of the associated contravariant
set, bi, can be arranged at the columns of another matrix, Φ,

F ≡




↑ ↑ ↑
b1 · · · bN

↓ ↓ ↓


 , Φ ≡




↑ ↑ ↑
b1 · · · bN

↓ ↓ ↓


 . (2.1.6)

We may write

F = bk ⊗ ǫk, Φ = bk ⊗ ǫk, (2.1.7)

where summation is implied over the repeated index, k. By definition,
all entries of the Cartesian array ǫk are zero, except for the kth entry
that is equal to 1, as discussed in Section 1.4.

2.1.4 Relation between F and Φ

Let ω be a diagonal matrix whose mth diagonal element is equal to
ω(m). By construction,

FT ·Φ = ΦT · F = ω, (2.1.8)

where the superscript T denotes the matrix transpose. To confirm this
equation, we write

FT ·Φ = (ǫk ⊗ bk) · (bm ⊗ ǫm) = (bk · bm) ǫk ⊗ ǫm, (2.1.9)

and thus

FT ·Φ = δkm ω
(k)ǫk ⊗ ǫm = ω(k)ǫk ⊗ ǫk, (2.1.10)
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where summation is implied over the repeated index, k. To complete
the proof, we recall that ǫk ⊗ ǫk is the null matrix with one at the kth
diagonal entry.

We have found that

Φ = F−T ·ω, F = Φ−T · ω, (2.1.11)

where the superscript −T denotes the inverse of the transpose, which is
equal to the transpose of the inverse. If the two sets are biorthonormal,
ω is the identity matrix, I, and Φ is the inverse of FT, and vice versa.

2.1.5 Biorthogonal construction

The two equations in (2.1.11) provide us with a practical method of
computing contravariant from covariant matrices encapsulating base
vectors, and vice versa, for given ω.

2.1.6 Cartesian base

If the base vectors constitute a Cartesian base,

bi = bi = ei (2.1.12)

for i = 1, . . . , N , the matrix ω is the unit matrix, F = Φ, and F =
F−T, which shows that the matrices F and Φ are orthogonal.

Exercise

2.1.1 Compute contravariant base vectors, bi, associated with the co-
variant base vectors b1 = [2, 0] and b2 = [3, 1].

2.2 Metric coefficients

It is useful to introduce two sets of coefficients,

bij ≡ bi · bj , bij ≡ bi · bj, (2.2.1)

where bij are termed the covariant metric coefficients and bij are termed
the contravariant metric coefficients. The former are arranged in a
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matrix b and the latter are arranged in a matrix β defined such that

[b]ij = bij , [β]ij = bij . (2.2.2)

Thus, the ij element of the matrix b is equal to bij and the ij element
of the matrix β is equal to bij .

b =



b11 b12 b13
b21 b22 b23
b31 b32 b33


 , β =



b11 b12 b13

b21 b22 b23

b31 b32 b33


 . (2.2.3)

By definition,

b = FT · F, β = ΦT ·Φ. (2.2.4)

2.2.1 Relation between dual metric coefficients

Using (2.1.11) to express Φ in terms of F in the second expression of
(2.2.4), we find that

β = ω · F−1 · F−T · ω = ω · (FT · F)−1 · ω. (2.2.5)

Simplifying, we find that

β = ω · b−1 ·ω, b = ω · β−1 · ω. (2.2.6)

The first of these equations can be restated as

ω−1 · β = (ω−1 · b)−1, (2.2.7)
which shows that

ω−1 · b · ω−1 · β = I, ω−1 · β · ω−1 · b = I. (2.2.8)

If ω is the identity matrix, and only then, b is the inverse of β. In
index notation, the first equation in (2.2.8) takes the form

1

ω(j)
bij b

jk = ω(i) δik, (2.2.9)

where summation is implied over the repeated index, j.
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2.2.2 Jacobians

The Jacobian of the covariant and contravariant bases are defined as

J◦ = det(F), J ◦ = det(Φ). (2.2.10)

Taking the determinant of both sides of the equation FT ·Φ = ω, and
recalling that the determinant of a matrix is equal to the determinant
of the transpose, we find that

J◦J ◦ = det(ω), (2.2.11)

where

det(ω) =

N∏

i=1

ω(i). (2.2.12)

Now we recall the definitions b ≡ FT · F and β ≡ ΦT · Φ, and find
that

det(b) = J 2
◦ , det(β) = J ◦2. (2.2.13)

Using these expressions, we find that

J ◦

J◦

=
det(ω)

det(b)
,

J◦

J ◦
=

det(ω)

det(β)
. (2.2.14)

2.2.3 Scaled metric coefficients

We have found that

b̂ · β̂ = I, b̂−1 = β̂, β̂
−1

= b̂, (2.2.15)

where

b̂ ≡ ω−1 · b β̂ ≡ ω−1 · β (2.2.16)

are scaled matrices defined such that

b̂ij ≡
1

ω(i)
bij , β̂ij ≡

1

ω(i)
βij =

1

ω(i)
bij . (2.2.17)
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Note that bij is equal to bji and βij is equal to βji, but b̂ij is not

necessarily equal to b̂ji and β̂
ij is not necessarily equal to β̂ji.

2.2.4 Contravariant from covariant base vectors

Each contravariant base vector can be expressed in terms of the co-
variant base vectors in a linear combination involving the matrix β̂ij
defined in (2.2.17),

bi = β̂ji bj , (2.2.18)

where summation is implied over the repeated index, j. To prove this
assertion, we project this formula onto bm, where m is a free index,
and obtain

bim = β̂ji bj · bm = β̂ji δjm ω
(m) = β̂mi ω

(m), (2.2.19)

which reproduces the definition of β̂mj . Unfortunately, relation (2.2.18)
is circular: to compute bi in terms of bj , we need all of βij and ω(j),
which are defined in terms of the set bi.

2.2.5 Covariant from contravariant base vectors

Conversely, each covariant vector, bi, can be expressed in terms of the
contravariant vectors in a linear combination involving the matrix b̂ij
defined in (2.2.17),

bi = b̂ji b
j , (2.2.20)

where summation is implied over the repeated index, j. To prove this
assertion, we project this equation onto bm, where m is a free index,
we obtain

bim = b̂ji b
j · bm = b̂ji δjm ω

(m) = b̂mi ω
(m), (2.2.21)

which reproduces the definition of b̂jm. Unfortunately, relation (2.2.20)
is circular: to compute bi from bj , we need all of bij and ω(j), which
are defined in terms of the set bj.

Substituting (2.2.18) into (2.2.20), we find that

bj = β̂mi b̂ij bm, (2.2.22)
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where summation is implied over the repeated indices, i and m. This
equation confirms that the metric coefficients satisfy property (2.2.15),

that is, β̂mi b̂ij = δmj .

2.2.6 Confirmation by code

The following Matlab code named bio, located in directory Bio of
Tunlib, performs the following functions: (a) it defines covariant
base vectors in two dimensions, (b) it computes the contravariant from
the covariant base vectors by rotation, around the origin, as shown in
Figure 2.1.1, and (c) it confirms equations (2.2.15):

%---

% covariant base vectors

% bcov1 and bcov2

%---

thbcov1 = 0.034*pi; % arbitrary

thbcov2 = 0.334*pi; % arbitrary

lb1 = 1.4; % arbitrary

lb2 = 1.8; % arbitrary

bcov1(1) = lb1*cos(thbcov1); bcov1(2) = lb1*sin(thcovb1);

bcov2(1) = lb2*cos(thbcov2); bcov2(2) = lb2*sin(thcovb2);

%---

% contravariant base vectors

% bcon1 and bcon2

%---

thbcon1 = thbcov2 - 0.5*pi;

thbcon2 = thbcov1 + 0.5*pi;

lc1 = 2.4; % arbitrary

lc2 = 1.2; % arbitrary

bcon1(1) = lc1*cos(thbcon1); bcon1(2) = lc1*sin(thbcon1);

bcon2(1) = lc2*cos(thbcon2); bcon2(2) = lc2*sin(thbcon2);
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%---

% projections

%---

omg(1) = bcov1*bcon1'; omg(2) = bcov2*bcon2';

%---

% compute covmet (b)

%---

covmet(1,1) = bcov1*bcov1'; covmet(1,2) = bcov1*bcov2';

covmet(2,1) = bcov2*bcov1'; covmet(2,2) = bcov2*bcov2';

%---

% compute conmet (beta)

%---

conmet(1,1) = bcon1*bcon1'; conmet(1,2) = bcon1*bcon2';

conmet(2,1) = bcon2*bcon1'; conmet(2,2) = bcon2*bcon2';

%---

% scaled matrices (hat)

%---

for i=1:2

for j=1:2

hatcovmet(i,j) = covmet(i,j)/omg(i);

hatconmet(i,j) = conmet(i,j)/omg(i);

end

end

%---

% confirm orthogonality

%---

[inv(hatcovmet) hatconmet]

%---

% confirm base vectors
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%---

bcon1_conf = hatconmet(1,1)*bcov1 + hatconmet(2,1)*bcov2;

bcon2_conf = hatconmet(1,2)*bcov1 + hatconmet(2,2)*bcov2;

bcov1_conf = hatcovmet(1,1)*bcon1 + hatcovmet(2,1)*bcon2;

bcov2_conf = hatcovmet(1,2)*bcon1 + hatcovmet(2,2)*bcon2;

%---

% print

%---

[bcov1, bcov1_conf;

bcov2, bcov2_conf;

bcon1, bcon1_conf;

bcon2, bcon2_conf]

Running the code generates the following output:

2.1190 -0.6228 2.1190 -0.6228

-0.9687 0.8240 -0.9687 0.8240

1.3920 0.1493 1.3920 0.1493

0.8967 1.5607 0.8967 1.5607

2.0810 -1.1956 2.0810 -1.1956

-0.1279 1.1932 -0.1279 1.1932

The first pair of columns is identical to the second pair, as required.

2.2.7 Cartesian base

If the base vectors constitute a Cartesian base,

bi = bi = ei (2.2.23)

for i = 1, . . . , N , the matrix ω is the unit matrix, the matrix F = Φ is
orthogonal, and b = β are both equal to the identity matrix.
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Exercise

2.2.1 Run the code bio for an orthogonal but non-Cartesian pair of
covariant base vectors and discuss the results.

2.3 Vector components

An arbitrary vector, v, can be expanded in two ways in terms of co-
variant or contravariant base vectors,

v = vi bi = vi b
i, (2.3.1)

where vi are contravariant vector components, vi are covariant vector
components, and summation is implied over the repeated index, i.

Note that the contravariant components, vi, refer to the covariant
base, bi, whereas the covariant components, vi, refer to the contravari-
ant base, bi.

2.3.1 Notational inconsistency

An unfortunate notational inconsistency has been introduced to con-
form with standard convention. The ith covariant vector component
is denoted as vi, but he ith element of the Cartesian vector v is also
denoted as vi. For clarity, the Cartesian components could be denoted
with a Greek index, such as vα for α = 1, . . . , N .

2.3.2 Computation of vector components

Projecting the double expansion (2.3.1) onto bn, where n is a free
index, we obtain

v · bn = vi bi · bn = vi b
i · bn, (2.3.2)

yielding

v · bn = vi bin = vn ω
(n). (2.3.3)

Rearranging, we obtain an expression for the covariant components in
terms of the contravariant vector components,

vn =
1

ω(n)
v · bn =

1

ω(n)
bin v

i = b̂ni v
i, (2.3.4)
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where summation is implied over the repeated index, i.

Now projecting the double expansion (2.3.1) onto bn, where n is a
free index, we obtain

v · bn = vi bi · bn = vi b
i · bn, (2.3.5)

yielding

v · bn = vn ω(n) = vi b
in. (2.3.6)

Rearranging, we obtain an expression for the contravariant in terms of
the covariant vector components,

vn =
1

ω(n)
v · bn =

1

ω(n)
bin vi = β̂ni vi, (2.3.7)

where summation is implied over the repeated index, i.

2.3.3 Raising and lowering indices

Formulas (2.3.4) and (2.3.7) provide us with rules for lowering or rais-
ing the indices, that is, for computing contravariant from covariant
components and vice versa,

vn = b̂ni v
i, vn = β̂ni vi. (2.3.8)

Note the similarity and differences between this pair of equations and
the pair of equations (2.2.20) and (2.2.18) repeated below for conve-
nience,

bn = b̂in b
i bn = β̂in bi. (2.3.9)

We recall that the scaled matrices b̂ and β̂ are not necessarily sym-
metric.

2.3.4 Confirmation by code

The following code continuing code bio listed in Section 2.2, computes
the vector components and confirms the conversion formulas:
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%---

% arbitrary vector

%---

v = [-2.9 1.3];

v1_con = v*bcon1'/omg(1);

v2_con = v*bcon2'/omg(2);

v1_cov = v*bcov1'/omg(1);

v2_cov = v*bcov2'/omg(2);

v1_cov_test = hatcovmet(1,1)*v1_con+hatcovmet(1,2)*v2_con;

v2_cov_test = hatcovmet(2,1)*v1_con+hatcovmet(2,2)*v2_con;

v1_con_test = hatconmet(1,1)*v1_cov+hatconmet(1,2)*v2_cov;

v2_con_test = hatconmet(2,1)*v1_cov+hatconmet(2,2)*v2_cov;

[v1_cov v1_cov_test;

v2_cov v2_cov_test;

v1_con v1_con_test;

v2_con v2_con_test]

Running the code generates the following output:

-1.4137 -1.4137

-0.3271 -0.3271

-2.7919 -2.7919

1.0999 1.0999

The first pair of columns is identical to the second pair, as required.

2.3.5 Inner product of two vectors

The inner product of two vectors, v and u, is a scalar given by

v · u = (vibi) · (ujbj) = viuj bi · bj, (2.3.10)

where summation is implied over the repeated indices, i and j. Simpli-
fying, we obtain

v · u = viuj δij ω
(i) = viui ω

(i), (2.3.11)
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where summation is implied over the repeated index i. Working in a
similar fashion, we obtain

v · u = vi u
i ω(i), (2.3.12)

where summation is implied over the repeated index, i.

We conclude that

v · u = viui ω
(i) = vi u

i ω(i), (2.3.13)

involving corresponding pairs of contravariant and covariant compo-
nents.

Now using the rules for raising and lowering indices, we find that

vi u
i ω(i) = (

1

ω(i)
bimv

m) (
1

ω(i)
binvn)ω

(i) (2.3.14)

and then

vi u
i ω(i) = (

1

ω(i)
bmi b

in)vmvn. (2.3.15)

According to (2.2.9), the expression inside the parentheses on the right-
hand side is equal to ω(n) δmn, thereby reconciling the two expressions
given in (2.3.13).

2.3.6 Summary

A summary of definitions and properties pertaining to biorthogonal
bases and vector components is given in Tables 2.3.1 and 2.3.2.

Exercise

2.3.1 Confirm that the expression inside the parentheses on the right-
hand side of (2.3.15) is equal to ω(n) δmn,
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bi covariant base vectors
bi contravariant base vectors

ω(i) ≡ bi · bi diagonal projections

bi · bj = δij ω
(i) biorthogonality condition

F ≡




↑ ↑ ↑
b1 · · · bN

↓ ↓ ↓


 matrix of covariant base vectors

Φ ≡




↑ ↑ ↑
b1 · · · bN

↓ ↓ ↓


 matrix of contravariant base vectors

FT ·Φ = ΦT · F = ω biorthogonality condition

bij = bi · bj covariant metric coefficients

βij = bij = bi · bj contravariant metric coefficients

b̂ij =
1

ω(i)
bij scaled covariant metric coefficients

β̂ij =
1

ω(i)
βij =

1

ω(i)
bij scaled contravariant metric coefficients

b = FT · F covariant metric coefficients matrix
β = ΦT ·Φ contravariant metric coefficients matrix

b̂−1 = β̂ biorthogonality condition

Table 2.3.1 Definitions, properties, and miscellaneous relations per-
taining to dual biorthogonal bases.
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bi = b̂ji b
j covariant from contravariant base vectors

bi = β̂ji bj contravariant from covariant base vectors

vi = b̂ij v
j covariant from contravariant vector components

vi = β̂ij vj contravariant from covariant vector components

Table 2.3.2 Definitions, properties, and miscellaneous relations per-
taining to dual biorthogonal bases.

2.4 Three dimensions

The two equations in (2.1.11) provide us with a practical method of
computing contravariant from covariant matrices encapsulating base
vectors and vice versa, in terms of a matrix inverse. In two dimensions,
contravariant base vectors can be computed from covariant base vec-
tors, and vice versa, by ±90◦ planar rotations. Explicit construction
formulas are available in three dimensions.

2.4.1 Contravariant from covariant vectors in three dimensions

In three dimensions, contravariant base vectors can be computed from
the covariant base vectors using the formula

bi =
1

2

1

J◦

ω(i) ǫijk bj × bk, (2.4.1)

where ǫijk is the Levi–Civita symbol, summation is implied over the
repeated indices, j and k, and

J◦ ≡ b1 · (b2 × b3) = det(F) (2.4.2)

is the assumed positive volume of a parallelepiped defined by b1, b2,
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and b3. Explicitly,

b1 =
1

J◦

ω(1) b2 × b3,

b2 =
1

J◦

ω(2) b3 × b1, (2.4.3)

b3 =
1

J◦

ω(3) b1 × b2.

Based on these representations, we find that

bi × bj = J◦

1

ω(k)
ǫijk b

k, (2.4.4)

which confirms that bk is perpendicular to bi and bj for k 6= i, j.

2.4.2 Covariant from contravariant vectors in three dimensions

Conversely, the contravariant base vectors can be computed from the
covariant base vectors using the expression

bi =
1

2

1

J ◦
ω(i) ǫijk b

j × bk, (2.4.5)

where summation is implied over the repeated indices, j and k,

J ◦ ≡ b1 · (b2 × b3) = det(Φ) (2.4.6)

is the assumed positive volume of a parallelepiped defined by b1, b2,
and b3. Explicitly,

b1 =
1

J ◦
ω(1) b2 × b3,

b2 =
1

J ◦
ω(2) b3 × b1, (2.4.7)

b3 =
1

J ◦
ω(3) b1 × b2.

Based on these representations, we find that

bi × bj = J ◦
1

ω(k)
ǫijk bk, (2.4.8)
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which confirms that bk is perpendicular to bi and bj for k 6= i, j.

2.4.3 Cross product

The cross or outer (×) product of two three-dimensional vectors, v and
u, is another vector given by

w ≡ v× u = (vibi)× (ujbj) = (vib
i)× (ujb

j), (2.4.9)

where summation is implied over the repeated indices, i and j. Dis-
tributing the multiplications, we find that

w = viuj bi × bj = viuj b
i × bj . (2.4.10)

Now recalling equations (2.4.4) and (2.4.8), we find that

w = J ◦ ǫkij viuj
1

ω(k)
bk = J◦ ǫkij v

iuj
1

ω(k)
bk, (2.4.11)

where summation is implied over the repeated indices, i, j, and k.

We have found that the contravariant and covariant components of
w are given by

wk = J ◦
1

ω(k)
ǫkij viuj, wk = J◦

1

ω(k)
ǫkij v

iuj. (2.4.12)

Corresponding pairs of vector components are involved in these expres-
sions.

2.4.4 An identity

Now using the rules for lowering indices, we find that

wn =
1

ω(n)
bknw

k = J ◦
1

ω(n)

1

ω(k)
ǫijk bkn viuj, (2.4.13)

and then

wn = J ◦
1

ω(n)

1

ω(k)
ǫijk bkn

1

ω(i)
bpi v

p 1

ω(j)
bqju

q, (2.4.14)

which can be rearranged into

wn = J ◦
1

ω(k)

1

ω(i)

1

ω(j)
ǫijk bkn bpi bqj v

p uq
1

ω(n)
. (2.4.15)
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Comparing this equation with the second equation in (2.4.12), we derive
the identity

J◦ ǫpqn = J ◦
1

ω(k)

1

ω(i)

1

ω(j)
ǫijk bkn bpi bqj . (2.4.16)

which can be rearranged as

ǫpqn =
1

det(b)
ǫijkbip bjq bkn. (2.4.17)

In fact, this identity is satisfied for any symmetric matrix, b.

Exercise

2.4.1 Confirm by numerical computation identity (2.4.17) for a sym-
metric matrix b of your choice.

2.5 Biorthogonal dyadic tensor bases

The covariant and contravariant base vectors can be used to compose
tensor bases in four combinations.

2.5.1 Covariant–contravariant base

A matrix base can be formulated in terms of a covariant–contravariant
biorthogonal dyadic product as

B
◦j
i = bi ⊗ bj , (2.5.1)

where the circular symbol (◦) serves as a single-space holder that can
be interpreted as empty space. This notation means that

[B◦j
i ]kℓ = [bi]k × [bj ]ℓ, (2.5.2)

where [B◦j
i ]kℓ is the kℓ component of B◦j

i , [bi]k is the kth component
of bi [b

j ]ℓ is the ℓth component of bj , and × denotes regular scalar
multiplication.
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2.5.2 Tensor expansion

An arbitrary tensor, T, can be expanded as

T = T i
◦jB

◦j
i = T i

◦j bi ⊗ bj , (2.5.3)

where T i
◦j are the matrix components associated with the covariant–

contravariant dyadic basis, and summation is implied over the repeated
indices, i and j. The coefficients T i

◦j are the contravariant–covariant
(abbreviated as cnv) components of T.

Projecting expansion (2.5.3) from the left onto bm, and using the
aforementioned orthogonality property, we obtain

bm ·T = ω(m) Tm
◦j b

j , (2.5.4)

where m is a free index. Projecting (2.5.4) onto bn, using once again
the orthogonality property, and rearranging, we obtain an explicit ex-
pression for the matrix components,

Tm
◦n =

1

ω(m) ω(n)
bm ·T · bn, (2.5.5)

where n is another free index.

If the two sets of basis vectors are biorthonormal, then ω(m) = 1
and ω(n) = 1 for any m and n. Consequently, the fraction on the
right-hand side of (2.5.5) is equal to unity.

2.5.3 Contravariant–covariant base

We may also consider the contravariant–covariant expansion

T = T ◦j
i bi ⊗ bj , (2.5.6)

where summation is implied over the repeated indices, i and j, For
reasons that will become clear in hindsight, the coefficients T ◦j

i are
called the covariant–contravariant (cvn) components of T. Performing
projections, we obtain the formula

T ◦n
m =

1

ω(m) ω(n)
bm ·T · bn, (2.5.7)
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which differs from that shown in (2.5.5).

2.5.4 Contravariant–contravariant matrix base

As a third possibility, we consider the contravariant–contravariant ex-
pansion

T = Tij b
i ⊗ bj , (2.5.8)

where summation is implied over the repeated indices, i and j. The
coefficients Tij are the covariant–covariant (cvv) components of T.
Performing projections, we obtain

Tmn =
1

ω(m) ω(n)
bm ·T · bn. (2.5.9)

Note that, to obtain the cvv components, we employ the covariant base
vectors, bm and bn.

2.5.5 Covariant–covariant matrix base

As a fourth possibility, we consider the covariant–covariant expansion

T = T ij bi ⊗ bj, (2.5.10)

where summation is implied over the repeated indices, i and j. The
coefficients T ij are the contravariant–contravariant (cnn) components
of T. Performing projections, we obtain

Tmn =
1

ω(m) ω(n)
bm ·T · bn. (2.5.11)

Note that, to obtain the cnn components, we employ the contravariant
base vectors, bm and bn.

2.5.6 Notational inconsistency

A notational inconsistency has been introduced inadvertently to con-
form with standard convention. The ijth element of the matrix T is
denoted by Tij , and the ijth covariant–covariant matrix component
was also denoted as Tij. For clarity, when necessary, the former may
be denoted with Greek indices as Tαβ .
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2.5.7 Numerical computation

The following Matlab code named bioten, located in directory Bio of
Tunlib, computes four sets of matrix components, concov, covcon,
covcov, and concon, using formulas (2.5.5), (2.5.7), (2.5.11) and
(2.5.9):

%----------

% bcov1 and bcov2 (covariant)

%----------

thbcov1 = 0.034*pi; % arbitrary

thbcov2 = 0.334*pi; % arbitrary

lb1 = 1.4; % arbitrary

lb2 = 1.8; % arbitrary

bcov1(1) = lb1*cos(thbcov1); bcov1(2) = lb1*sin(thbcov1);

bcov2(1) = lb2*cos(thbcov2); bcov2(2) = lb2*sin(thbcov2);

%---

% bcon1 and bcon2 (contravariant)

%---

thbcon1 = thbcov2 - 0.5*pi;

thbcon2 = thbcov1 + 0.5*pi;

lc1 = 2.4; % arbitrary

lc2 = 1.2; % arbitrary

%---

% projections omega(1) and omega(2)

%---

omg(1) = bcov1*bcon1';

omg(2) = bcov2*bcon2';

%---

% matrix

%---
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T = [ 1 2; % arbitrary

3 4];

%---

% con-cov components

%---

Tnv(1,1) = bcon1*T*bcov1'/(omg(1)*omg(1));

Tnv(1,2) = bcon1*T*bcov2'/(omg(1)*omg(2));

Tnv(2,1) = bcon2*T*bcov1'/(omg(2)*omg(1));

Tnv(2,2) = bcon2*T*bcov2'/(omg(2)*omg(2));

%---

% cov-con components

%---

Tvn(1,1) = bcov1*T*bcon1'/(omg(1)*omg(1));

Tvn(1,2) = bcov1*T*bcon2'/(omg(1)*omg(2));

Tvn(2,1) = bcov2*T*bcon1'/(omg(2)*omg(1));

Tvn(2,2) = bcov2*T*bcon2'/(omg(2)*omg(2));

%---

% con-con components

%---

Tnn(1,1) = bcon1*T*bcon1'/(omg(1)*omg(1));

Tnn(1,2) = bcon1*T*bcon2'/(omg(1)*omg(2));

Tnn(2,1) = bcon2*T*bcon1'/(omg(2)*omg(1));

Tnn(2,2) = bcon2*T*bcon2'/(omg(2)*omg(2));

%---

% cov-cov components

%---

Tvv(1,1) = bcov1*T*bcov1'/(omg(1)*omg(1));

Tvv(1,2) = bcov1*T*bcov2'/(omg(1)*omg(2));

Tvv(2,1) = bcov2*T*bcov1'/(omg(2)*omg(1));

Tvv(2,2) = bcov2*T*bcov2'/(omg(2)*omg(2));
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[Tnv Tvn Tnn Tvv]

Running the code generates the following output as instructed by the
last line of the code:

-0.2962 -0.4882 -0.0290 0.7997 -0.3237 -0.1153

0.4149 1.4582

1.1534 3.3221 0.4212 2.9063 0.3752 1.6202

1.8874 5.7457

The first two columns are the components of T in the covariant-
contravariant base, bi ⊗ bj . The second pair of columns are the com-
ponents of T in the contravariant-covariant base, bi ⊗ bj . The third
pair of columns are the components of T in the covariant-covariant
base, bi ⊗bj. The fourth pair of columns are the components of T in
the contravariant-contravariant base, bi ⊗ bj .

Exercises

2.5.1 Compute the pure and mixed components of the following tensor
in a biorthogonal dyadic matrix base with covariant base vectors b1 =
[1, 0] and b2 = [1, 1],

T =

[
0 2
1 2

]
. (2.5.12)

2.5.2 Run the code bioten for T equal to the identity matrix, I, and
discuss the results.

2.6 Biorthogonal tensor components

We recall the four tensor bases introduced in Section 2.5 in terms of
biorthogonal sets of base vectors,

bi ⊗ bj , bi ⊗ bj , bi ⊗ bj , bi ⊗ bj . (2.6.1)



D
R
A
F
T

2.6 Biorthogonal tensor components 95

An arbitrary tensor, T, can be expanded as

T = T ij bi ⊗ bj = T i
◦j bi ⊗ bj

= T ◦j
i bi ⊗ bj = Tij b

i ⊗ bj , (2.6.2)

where summation is implied over the repeated indices i and j.

2.6.1 Four sets of tensor components

The coefficients of T in the aforementioned bases are named pure con-
travariant, T ij, contravariant–covariant, T i

◦j , covariant–contravariant,

T ◦j
i , and pure covariant, Tij . We recall that a hollow circle serves as a

space holder.

The four sets of coefficients can be arranged into different compo-
nent matrices. We will see that, if one set is known, the other three
sets can be computed by straightforward conversion.

2.6.2 Tensor transpose

The transpose of the matrix T can be expanded in four ways,

TT = T ji bi ⊗ bj = T ◦i
j bi ⊗ bj (2.6.3)

= T j
◦i b

i ⊗ bj = Tji b
i ⊗ bj .

If the tensor T is symmetric, then

T ij = T ji, T i
◦j = T ◦i

j , T ◦j
i = T j

◦i, Tij = Tji, (2.6.4)

and correspondingly Tαβ = Tβα, where Greek indices correspond to
Cartesian coordinates. If the tensor T is antisymmetric, then

T ij = −T ji, T i
◦j = −T ◦i

j , T ◦j
i = −T j

◦i, Tij = −Tji (2.6.5)

and correspondingly Tαβ = −Tβα.

2.6.3 Conversion

Projecting equations (2.6.2) from the right on bn, where n is a free
index, we obtain the vector equation

T · bn = T inω(n) bi = T i
◦j b

jnbi = T ◦n
i ω(n) bi = Tij b

jn bi. (2.6.6)
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Projecting equation (2.6.6) onto bm, wherem is a free index, we obtain
the scalar equation

bm ·T · bn = Tmnω(n) ω(m) = Tm
◦j ω

(m) bjn

= T ◦n
i ω(n) bim = Tij b

im bjn. (2.6.7)

Rearranging, we obtain

Tmn =
1

ω(n)
Tm
◦j b

jn =
1

ω(m)
T ◦n
i bim

=
1

ω(n) ω(m)
Tij b

im bjn, (2.6.8)

which provides us with a formula for raising one or two indices.

2.6.4 Conversion continued

We continue the conversion process by projecting equation (2.6.6) on
bm, where m is a free index, to obtain

bm ·T · bn = T inω(n) bim = T i
◦j b

jn bim

= T ◦n
m ω(n)ω(m) = Tmj ω

(m) bjn. (2.6.9)

Rearranging, we obtain

T ◦n
m =

1

ω(m)
T in bim =

1

ω(n)
Tmj b

jn =
1

ω(n)ω(m)
T i
◦j bim b

jn, (2.6.10)

which provides us with a formula for raising one or two indices.

2.6.5 Confirmation by code

The following lines of code, continuing code bioten listed in Section
2.3, computes the cvn components, T ◦n

m , from the cnv components,
Tm
◦n, using the formula

T ◦n
m =

1

ω(n)ω(m)
T i
◦j bim b

jn, (2.6.11)

where summation is implied over the repeated indices, i and j:
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%---

% compute covmet (b)

%---

covmet(1,1) = bcov1*bcov1'; covmet(1,2) = bcov1*bcov2';

covmet(2,1) = bcov2*bcov1'; covmet(2,2) = bcov2*bcov2';

%---

% compute conmet (beta)

%---

conmet(1,1) = bcon1*bcon1'; conmet(1,2) = bcon1*bcon2';

conmet(2,1) = bcon2*bcon1'; conmet(2,2) = bcon2*bcon2';

%---

% lower and raise an index

%

% vn: covariant-contravariant

% nv: contravariant-covariant

%---

for m=1:2

for n=1:2

Tvn1(m,n) = 0.0;

for i=1:2

for j=1:2

Tvn1(m,n) = Tvn1(m,n) + Tnv(i,j)*covmet(i,m)*conmet(j,n);

end

end

Tvn1(m,n) = Tvn1(m,n)/(omg(m)*omg(n));

end

end

[Tvn Tvn1]

Running the code generates the following output, as instructed by the
last line of the code:

-0.0290 0.7997 -0.0290 0.7997

0.4212 2.9063 0.4212 2.9063
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thereby confirming the conversion formulas.

2.6.6 Determinants

The following relations can be established between the determinants,

det(T) = det(ω)× det[T i
◦j ] = det[ω]× det[T ◦j

i ] (2.6.12)

and also

det(T) = det(b)× det[T ij] = det(β)× det[Tij ], (2.6.13)

where

det(ω) =

N∏

i=1

ω(i). (2.6.14)

Only one of these formulas is necessary to be established, and the others
arise from the transformation rules for the contravariant and covariant
tensor components.

2.6.7 Confirmation by code

The followingMatlab code, continuing the code bioten listed previously
in this section, confirms these formulas for the determinant:

%---

% four matrix bases

%---

for i=1:2

for j=1:2

Bconcov11(i,j) = bcon1(i)*bcov1(j);

Bconcov12(i,j) = bcon1(i)*bcov2(j);

Bconcov21(i,j) = bcon2(i)*bcov1(j);

Bconcov22(i,j) = bcon2(i)*bcov2(j);

Bcovcon11(i,j) = bcov1(i)*bcon1(j);

Bcovcon12(i,j) = bcov1(i)*bcon2(j);

Bcovcon21(i,j) = bcov2(i)*bcon1(j);
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Bcovcon22(i,j) = bcov2(i)*bcon2(j);

Bcovcov11(i,j) = bcov1(i)*bcov1(j);

Bcovcov12(i,j) = bcov1(i)*bcov2(j);

Bcovcov21(i,j) = bcov2(i)*bcov1(j);

Bcovcov22(i,j) = bcov2(i)*bcov2(j);

Bconcon11(i,j) = bcon1(i)*bcon1(j);

Bconcon12(i,j) = bcon1(i)*bcon2(j);

Bconcon21(i,j) = bcon2(i)*bcon1(j);

Bconcon22(i,j) = bcon2(i)*bcon2(j);

end

end

%---

% determinants

%---

A(1,1) = 0.4; A(1,2) = 0.1; % arbitrary matrix

A(2,1) = 0.8; A(2,2) = 0.7;

detA = det(A)

% some matrix

AVV = A(1,1)*Bcovcov11+A(1,2)*Bcovcov12 ...

+A(2,1)*Bcovcov21+A(2,2)*Bcovcov22;

% another matrix

ANN = A(1,1)*Bconcon11+A(1,2)*Bconcon12 ...

+A(2,1)*Bconcon21+A(2,2)*Bconcon22;

% another matrix

ANV = A(1,1)*Bconcov11+A(1,2)*Bconcov12 ...

+A(2,1)*Bconcov21+A(2,2)*Bconcov22;
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% another matrix

AVN = A(1,1)*Bcovcon11+A(1,2)*Bcovcon12 ...

+A(2,1)*Bcovcon21+A(2,2)*Bcovcon22;

% determinants in terms of det(A)

detomg = omg(1)*omg(2);

detcov = covmet(1,1)*covmet(2,2)-covmet(1,2)^2;

detcon = conmet(1,1)*conmet(2,2)-conmet(1,2)^2;

[det(AVV) detA*detcov;

det(ANN) detA*detcon;

det(ANV) detA*detomg;

det(AVN) detA*detomg]

Running the code generates the following output:

0.8313 0.8313

1.0858 1.0858

0.9500 0.9500

0.9500 0.9500

as prompted by the last four lines of the code. We see that, as expected,
the two columns are identical.

Exercises

2.6.1 Explain why the determinant of diagonal matrix is the product
of the diagonal elements.

2.6.2 Derive expressions for the trace of a tensor in terms of its or-
thogonal base components.

2.7 Tensor multiplication

Tensors can multiply vectors and other tensors in several ways. The
results can be expressed in compact form in terms of contravariant and
covariant components.
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2.7.1 Product of a tensor with a vector, Tv

The product of a tensor, T, with a vector v, is a new vector given by

u ≡ T · v = (T i
◦j bi ⊗ bj) · (vm bm). (2.7.1)

We find that

u ≡ T · v = T i
◦j v

m(bi ⊗ bj) · bm = T i
◦j v

m bi (b
j · bm), (2.7.2)

yielding

u ≡ T · v = T i
◦j v

j ω(j) bi, (2.7.3)

which shows that

ui = T i
◦j v

j ω(j). (2.7.4)

Working in a similar fashion, we find that

ui = T ij vj ω
(j) (2.7.5)

and

ui = Tij v
j ω(j) = T ◦j

i vj ω
(j) (2.7.6)

for the covariant vector components.

2.7.2 Product of a tensor with a vector, vT

Repeating the preceding procedure for vector–matrix multiplication,
now we define the vector h = v ·T, and find that

hi = T ji vj ω
(j) = T ◦i

j vj ω(j) (2.7.7)

for the contravariant components and

hi = Tji v
j ω(j) = T j

◦i vj ω
(j) (2.7.8)

for the covariant components.
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2.7.3 Product of two tensors

The product of two tensors, T and S, is another tensor given by

W ≡ T · S = (T i
◦j bi ⊗ bj) · (Smn bm ⊗ bn). (2.7.9)

We find that

W = T i
◦j S

mn (bi ⊗ bj) · (bm ⊗ bn)

= T i
◦j S

mn (bj · bm)bi ⊗ bn, (2.7.10)

yielding

W = T i
◦jS

jn ω(j) bi ⊗ bn. (2.7.11)

The pure contravariant (cnn) components of W are thus given by

W in = T i
◦j S

jn ω(j), (2.7.12)

where summation is implied over the repeated index, j. Working in a
similar fashion, we find that

Win = T ◦j
i Sj

◦n ω
(j), W ◦n

i = Tij S
jn ω(j), W i

◦n = T ij Sjn ω
(j),

(2.7.13)

involving the cvn, cnv, cvv, and cnn components of T and S, where
summation is implied over the repeated index, j.

2.7.4 Double-dot product

The double-dot product of two tensors, T and S, is a scalar given by

T : S ≡ trace(TT · S) = trace(T · ST), (2.7.14)

where the superscript T denotes the matrix transpose. Using the last
formula in (2.7.13), we find that

TT · S = T ji Sjn ω
(j) bi ⊗ bn. (2.7.15)

Next, we note that

trace(bi ⊗ bn) = ω(i) δin, (2.7.16)
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and obtain

T : S = TijS
ij ω(i) ω(j) = T ijSij ω

(i) ω(j), (2.7.17)

where summation is implied over the repeated indices, i and j.

Exercise

2.7.1 Derive expression (2.7.17).

2.8 Resolution of the identity tensor

Equation (2.5.5) provides us with an expression for the contravariant–
covariant (cnv) components of an arbitrary tensor, T,

Tm
◦n =

1

ω(m) ω(n)
bm ·T · bn. (2.8.1)

Identifying T with the identity tensor, I, we find that

Im◦n =
1

ω(m)
δmn (2.8.2)

and obtain

I =
1

ω(i)
bi ⊗ bi, (2.8.3)

where summation is implied over the repeated index i.

Working in a similar fashion, we obtain the expansion

I =
1

ω(i)
bi ⊗ bi, (2.8.4)

where summation is implied over the repeated index i.

Substituting into (2.8.3) the expression

bi =
1

ω(j)
bij bj , (2.8.5)
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we find that

I =
1

ω(i)ω(j)
bij bi ⊗ bj . (2.8.6)

Substituting into (2.8.4) the expression

bi =
1

ω(j)
bij b

j , (2.8.7)

we find that

I =
1

ω(i)ω(j)
bij b

i ⊗ bj , (2.8.8)

where summation is implied over the repeated indices i and j.

Compiling equations (2.8.3), (2.8.4), (2.8.6), and (2.8.8), we obtain
a four-fold expansion,

I =
1

ω(i)ω(j)
bij bi ⊗ bj =

1

ω(i)
bi ⊗ bi

=
1

ω(i)
bi ⊗ bi =

1

ω(i)ω(j)
bij b

i ⊗ bj , (2.8.9)

where summation is implied over the repeated indices, i and j.

2.8.1 Confirmation by code

The following Matlab code named bioid, located in directory Bio of
Tunlib, confirms this four-fold identity:

%----------

% bcov1 and bcov2 (covariant)

%----------

thbcov1 = 0.034*pi; % arbitrary

thbcov2 = 0.334*pi; % arbitrary

lb1 = 1.4; % arbitrary

lb2 = 1.8; % arbitrary

bcov1(1) = lb1*cos(thbcov1); bcov1(2) = lb1*sin(thbcov1);
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bcov2(1) = lb2*cos(thbcov2); bcov2(2) = lb2*sin(thbcov2);

%---

% bcon1 and bcon2 (contravariant)

%---

thbcon1 = thbcov2 - 0.5*pi;

thbcon2 = thbcov1 + 0.5*pi;

lc1 = 2.4; % arbitrary

lc2 = 1.2; % arbitrary

bcon1(1) = lc1*cos(thbcon1); bcon1(2) = lc1*sin(thbcon1);

bcon2(1) = lc2*cos(thbcon2); bcon2(2) = lc2*sin(thbcon2);

%---

% projections

%---

omg(1) = bcov1*bcon1';

omg(2) = bcov2*bcon2';

%---

% compute covmet

% (covariant metric coefficients)

%---

covmet(1,1) = bcov1*bcov1'; covmet(1,2) = bcov1*bcov2';

covmet(2,1) = bcov2*bcov1'; covmet(2,2) = bcov2*bcov2';

%---

% compute conmet

% (contravariant metric coefficients)

%---

conmet(1,1) = bcon1*bcon1'; conmet(1,2) = bcon1*bcon2';

conmet(2,1) = bcon2*bcon1'; conmet(2,2) = bcon2*bcon2';

%---
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% concon and covcov components of the identity matrix

%---

for i=1:2

for j=1:2

Iconcon(i,j) = conmet(i,j)/(omg(i)*omg(j));

Icovcov(i,j) = covmet(i,j)/(omg(i)*omg(j));

end

end

%---

% four matrix bases

%---

for i=1:2

for j=1:2

Bconcov11(i,j) = bcon1(i)*bcov1(j);

Bconcov12(i,j) = bcon1(i)*bcov2(j);

Bconcov21(i,j) = bcon2(i)*bcov1(j);

Bconcov22(i,j) = bcon2(i)*bcov2(j);

Bcovcon11(i,j) = bcov1(i)*bcon1(j);

Bcovcon12(i,j) = bcov1(i)*bcon2(j);

Bcovcon21(i,j) = bcov2(i)*bcon1(j);

Bcovcon22(i,j) = bcov2(i)*bcon2(j);

Bcovcov11(i,j) = bcov1(i)*bcov1(j);

Bcovcov12(i,j) = bcov1(i)*bcov2(j);

Bcovcov21(i,j) = bcov2(i)*bcov1(j);

Bcovcov22(i,j) = bcov2(i)*bcov2(j);

Bconcon11(i,j) = bcon1(i)*bcon1(j);

Bconcon12(i,j) = bcon1(i)*bcon2(j);

Bconcon21(i,j) = bcon2(i)*bcon1(j);

Bconcon22(i,j) = bcon2(i)*bcon2(j);

end

end
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%---

% identities

%---

Identity1 = Iconcon(1,1)*Bcovcov11 ...

+ Iconcon(1,2)*Bcovcov12 ...

+ Iconcon(2,1)*Bcovcov21 ...

+ Iconcon(2,2)*Bcovcov22;

Identity2 = Icovcov(1,1)*Bconcon11 ...

+ Icovcov(1,2)*Bconcon12 ...

+ Icovcov(2,1)*Bconcon21 ...

+ Icovcov(2,2)*Bconcon22;

Identity3 = 1.0/omg(1) *Bconcov11 ...

+ 1.0/omg(2)*Bconcov22;

Identity4 = 1.0/omg(1) *Bcovcon11 ...

+ 1.0/omg(2)*Bcovcon22;

[Identity1 Identity2 Identity3 Identity4]

Running the code generates the following output prompted by the last
line of the code:

1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000

0.0000 1.0000 0.0000 1.0000 0.0000 1.0000

0.0000 1.0000

The output consists of four identity matrices printed alongside.

2.9 Tensor inverse

The inverse of a tensor, T, denoted by

S = T−1, (2.9.1)

satisfies (2.7.9) with W = I,

I ≡ T · S, (2.9.2)
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where I is the identity tensor. Recalling the representation of the iden-
tity tensor shown in (2.8.9), we find that

TinS
nj ω(n) =

1

ω(i)
δij , T inSnj ω

(n) =
1

ω(i)
δij , (2.9.3)

and also

T ◦n
i Snj ω

(n) =
1

ω(i)ω(j)
bij , T i

◦nS
nj β(n) =

1

ω(i)ω(j)
bij , (2.9.4)

where summation is implied over the repeated index, n.

2.9.1 Confirmation by code

The following lines of code, continuing code bioten listed in Sections
2.3 and 2.4 confirms these formulas:

S = inv(T);

%---

% con-cov components

%---

Snv(1,1) = bcon1*S*bcov1'/(omg(1)*omg(1));

Snv(1,2) = bcon1*S*bcov2'/(omg(1)*omg(2));

Snv(2,1) = bcon2*S*bcov1'/(omg(2)*omg(1));

Snv(2,2) = bcon2*S*bcov2'/(omg(2)*omg(2));

%---

% cov-con components

%---

Svn(1,1) = bcov1*S*bcon1'/(omg(1)*omg(1));

Svn(1,2) = bcov1*S*bcon2'/(omg(1)*omg(2));

Svn(2,1) = bcov2*S*bcon1'/(omg(2)*omg(1));

Svn(2,2) = bcov2*S*bcon2'/(omg(2)*omg(2));

%---

% con-con components

%---
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Snn(1,1) = bcon1*S*bcon1'/(omg(1)*omg(1));

Snn(1,2) = bcon1*S*bcon2'/(omg(1)*beta(2));

Snn(2,1) = bcon2*S*bcon1'/(omg(2)*omg(1));

Snn(2,2) = bcon2*S*bcon2'/(omg(2)*omg(2));

%---

% cov-cov components

%---

Svv(1,1) = bcov1*S*bcov1'/(omg(1)*omg(1));

Svv(1,2) = bcov1*S*bcov2'/(omg(1)*omg(2));

Svv(2,1) = bcov2*S*bcov1'/(omg(2)*omg(1));

Svv(2,2) = bcov2*S*bcov2'/(omg(2)*omg(2));

%---

% test and confirm

%---

for i=1:2

for j=1:2

test1(i,j) = 0.0;

test2(i,j) = 0.0;

test3(i,j) = 0.0;

test4(i,j) = 0.0;

for n=1:2

test1(i,j) = test1(i,j)+Tvn(i,n)*Svv(n,j)*beta(n);

test2(i,j) = test2(i,j)+Tnv(i,n)*Snn(n,j)*beta(n);

test3(i,j) = test3(i,j)+Tnn(i,n)*Svv(n,j)*beta(n);

test4(i,j) = test4(i,j)+Tvv(i,n)*Snn(n,j)*beta(n);

end

verify1(i,j) = covmet(i,j)/beta(i)/beta(j);

verify2(i,j) = conmet(i,j)/beta(i)/beta(j);

end

verify3(i,i) = 1.0/beta(i);

verify4(i,i) = 1.0/beta(i);

end

%---

% test should be equal to confirm
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%---

[test1 verify1;

test2 verify2;

test3 verify3;

test4 verify4

]

Running the code generates the following output prompted by the last
line:

0.2653 0.3118 0.2653 0.3118

0.3118 1.0610 0.3118 1.0610

0.7795 -0.3564 0.7795 -0.3564

-0.3564 0.4716 -0.3564 0.4716

0.3679 0.0000 0.3679 0

0.0000 0.5723 0 0.5723

0.3679 0 0.3679 0

0 0.5723 0 0.5723

The 2 × 2 matrices on the left are equal to those on the right, as
required.

Exercise

2.9.1 Run the code given in the text for different base vectors of your
choice and confirm the accuracy of the results.

2.10 Diagonal component matrix

Suppose that the covariant arrays, b1, . . . ,bN , are eigenvectors of a
square N ×N matrix, T, with eigenvalues λ(n), so that

T · bn = λ(n) bn. (2.10.1)
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The associated contravariant arrays, b1, . . . ,bN , are the left eigenvec-
tors of T, satisfying the orthogonality condition

bm · bn = 0. (2.10.2)

Generalized eigenvectors can be introduced in the case of multiple
eigenvalues, as necessary.

2.10.1 cnv components

Consider the covariant–contravariant expansion

T = Tm
◦n bm ⊗ bn, (2.10.3)

where summation is implied over the repeated indices m and n. Equa-
tion (2.5.5), repeated below for convenience,

Tm
◦n =

1

ω(m)ω(n)
bm ·T · bn, (2.10.4)

yields

Tm
◦n =

1

ω(m)ω(n)
λ(n) bm · bn, (2.10.5)

where summation is not implied over n or m. Simplifying, we obtain
the coefficients

Tm
◦n =

1

ω(m)
λ(m) δnm, (2.10.6)

where δnm is Kronecker’s delta. We conclude that the contravariant-
covariant (cnv) component matrix is a diagonal matrix with diagonal
elements given by

Tm
◦m =

1

ω(m)
λ(m). (2.10.7)

When ω(m) = 1 for any m, the matrix Tm
◦n is the diagonal matrix of

eigenvalues.

The expansion (2.10.3) takes the spectral form

T =
1

ω(m)
λ(m) bm ⊗ bm, (2.10.8)
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where summation is implied over the repeated index, m. To confirm
this expansion, we compute

T · bn =
1

ω(m)
λ(m) bm (bm · bn) = λ(n) bn, (2.10.9)

where n is a free index, which shows that bn is an eigenvector of T
with corresponding eigenvalue λ(n).

2.10.2 cvn components

Using the rules for raising and lowering indices, we find that

T ◦n
m =

1

ω(n)ω(m)
T i
◦j bim b

jn =
1

ω(n)ω(m)

1

ω(i)
λ(i) bim b

in, (2.10.10)

where summation is implied over the repeated index, i.

2.10.3 cnn components

Using the rules for raising an index, we find that

Tmn =
1

ω(n)
Tm
◦j b

jn =
1

ω(n)ω(m)
λ(m) bmn. (2.10.11)

2.10.4 cvv components

Using the rules for lowering an index, we find that

Tmn =
1

ω(n)
T j
◦n bjm =

1

ω(n)ω(m)
λ(n) bmn. (2.10.12)

2.10.5 Confirmation by code

The following lines of code named biodiag, located in directory Bio of
Tunlib, confirms that formulas derived in this section:

%---

% specify a matrix

%---

T = [ 1.1, 2.1;
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0.4, 3.6];

%---

% compute eigenvectors and eigenvalues

%---

[EIG, LAM] = eig(T);

[EIGT, LAM] = eig(T');

lam(1) = LAM(1,1);

lam(2) = LAM(2,2);

%----------

% bcov1 and bcov2 (covariant)

%----------

fc1 = 2.3; % arbitrary

fc2 = 1.4; % arbitrary

bcov1(1) = fc1*EIG(1,1);

bcov1(2) = fc1*EIG(2,1);

bcov2(1) = fc2*EIG(1,2);

bcov2(2) = fc2*EIG(2,2);

%---

% bcon1 and bcon2 (contravariant)

%---

fc1 =-0.7; % arbitrary

fc2 = 2.4; % arbitrary

bcon1(1) = fc1*EIGT(1,1);

bcon1(2) = fc1*EIGT(2,1);

bcon2(1) = fc2*EIGT(1,2);

bcon2(2) = fc2*EIGT(2,2);

%---

% projections omega(1) and omega(2)

%---
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omg(1) = bcov1*bcon1';

omg(2) = bcov2*bcon2';

%---

% con-cov components

%---

Tnv(1,1) = bcon1*T*bcov1'/(omg(1)*omg(1));

Tnv(1,2) = bcon1*T*bcov2'/(omg(1)*omg(2));

Tnv(2,1) = bcon2*T*bcov1'/(omg(2)*omg(1));

Tnv(2,2) = bcon2*T*bcov2'/(omg(2)*omg(2));

%---

% cov-con components

%---

Tvn(1,1) = bcov1*T*bcon1'/(omg(1)*omg(1));

Tvn(1,2) = bcov1*T*bcon2'/(omg(1)*omg(2));

Tvn(2,1) = bcov2*T*bcon1'/(omg(2)*omg(1));

Tvn(2,2) = bcov2*T*bcon2'/(omg(2)*omg(2));

%---

% con-con components

%---

Tnn(1,1) = bcon1*T*bcon1'/(omg(1)*omg(1));

Tnn(1,2) = bcon1*T*bcon2'/(omg(1)*omg(2));

Tnn(2,1) = bcon2*T*bcon1'/(omg(2)*omg(1));

Tnn(2,2) = bcon2*T*bcon2'/(omg(2)*omg(2));

%---

% cov-cov components

%---

Tvv(1,1) = bcov1*T*bcov1'/(omg(1)*omg(1));

Tvv(1,2) = bcov1*T*bcov2'/(omg(1)*omg(2));

Tvv(2,1) = bcov2*T*bcov1'/(omg(2)*omg(1));

Tvv(2,2) = bcov2*T*bcov2'/(omg(2)*omg(2));
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[Tnn, Tvv, Tnv, Tvn]

%---

% compute covmet (b)

%---

covmet(1,1) = bcov1*bcov1';

covmet(1,2) = bcov1*bcov2';

covmet(2,1) = bcov2*bcov1';

covmet(2,2) = bcov2*bcov2';

%---

% compute conmet (beta)

%---

conmet(1,1) = bcon1*bcon1';

conmet(1,2) = bcon1*bcon2';

conmet(2,1) = bcon2*bcon1';

conmet(2,2) = bcon2*bcon2';

%---

% in terms of eigenvalues

%---

for m=1:2

for n=1:2

den = omg(m)*omg(n);

Tnv1(m,n) = 0.0;

Tnn1(m,n) = lam(m)*conmet(m,n)/den;

Tvv1(m,n) = lam(n)*covmet(m,n)/den;

Tvn1(m,n) = covmet(1,m)*conmet(1,n)*lam(1)/omg(1) ...

+ covmet(2,m)*conmet(2,n)*lam(2)/omg(2);

Tvn1(m,n) = Tvn1(m,n)/den;

end

Tnv1(m,m) = lam(m)/omg(m);

end

[Tnv Tnv1;
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Tnn Tnn1;

Tvn Tvn1;

Tvv Tvv1]

Running the code generates the following output:

-0.5667 -0.0000 -0.5667 0

-0.0000 1.3238 0 1.3238

0.1967 -0.1554 0.1967 -0.1554

-0.7575 2.5882 -0.7575 2.5882

0.0937 -2.2564 0.0937 -2.2564

-0.4006 1.6402 -0.4006 1.6402

2.1236 -1.4519 2.1236 -1.4519

-0.2978 0.8807 -0.2978 0.8807

The first couple of columns is equal to the second couple of columns,
as required.

Exercise

2.10.1 Prove that the eigenvectors and left eigenvectors of a matrix
corresponding to different eigenvalues are orthogonal.

2.11 Base transformations

Consider a covariant base, bi, and the associated contravariant base,
bi, and another covariant base, b̃i, and the associated contravariant
base, b̃i, where the second base and its properties are indicated by a
tilde.

2.11.1 Transformation of covariant base vectors

The two covariant bases are related by the linear equations

b̃i = Hij bj , bi = H−1
ij b̃j, (2.11.1)
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where H is a transformation matrix. The matrix H−1 with elements
H−1

ij is the inverse of the matrix H with elements Hij.

Projecting equations (2.11.1) onto contravariant untilded and tilded
base vectors, we find that

Hij =
1

ω(j)
b̃i · bj , H−1

ij =
1

ω̃(j)
bi · b̃j. (2.11.2)

Note that the elements of the matrix H and its inverse remain constant
under a change of the frame of reference.

2.11.2 Matrix formulation

The covariant base vectors bi can be arranged at the columns of a
matrix, F, and the covariant vectors b̃i can be are arranged at the
columns of another matrix, F̃,

F ≡




↑ ↑ ↑
b1 · · · bN

↓ ↓ ↓


 , F̃ ≡




↑ ↑ ↑
b̃1 · · · b̃N

↓ ↓ ↓


 . (2.11.3)

By definition,

F̃ = F ·HT, F = F̃ ·H−T, H = F̃T · F−T, (2.11.4)

where the matrix H is defined in (2.11.1) and the superscript −T
denotes the inverse of the transpose, which is equal to the transpose
of the inverse.

We recall the representations F = bk ⊗ ǫk and F̃ = b̃i ⊗ ǫi, and
confirm that

F ·HT = (bk ⊗ ǫk) · (Hijǫj ⊗ ǫi)
= Hijbj ⊗ ǫi = b̃i ⊗ ǫi = F̃, (2.11.5)

as shown in (2.11.4).

2.11.3 Transformation of contravariant base vectors

The two contravariant bases are related by

b̃i = Rijb
j , bi = R−1

ij b̃j , (2.11.6)
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where R is another base transformation matrix and R−1 is its inverse
with elements

Rij =
1

ω(j)
b̃i · bj , R−1

ij =
1

ω̃(j)
bi · b̃j. (2.11.7)

These expressions arise by projecting the two equations in (2.11.6) onto
contravariant base vectors.

2.11.4 Matrix formulation redux

The contravariant base vectors bi can be arranged at the columns of
a matrix, Φ, and the covariant vectors b̃i can be are arranged at the
columns of another matrix, Φ̃,

Φ ≡




↑ ↑ ↑
b1 · · · bN

↓ ↓ ↓


 , Φ̃ ≡




↑ ↑ ↑
b̃1 · · · b̃N

↓ ↓ ↓


 . (2.11.8)

By definition,

Φ̃ = Φ ·RT, Φ = Φ̃ ·R−T, R = Φ̃
T ·Φ−T, (2.11.9)

where the matrix R is defined in (2.11.7).

2.11.5 Relation between transformation matrices

Now we recall that

FT ·Φ = ω, F̃T · Φ̃ = ω̃, (2.11.10)

where ω is a diagonal matrix whose mth diagonal element is equal to
ω(m), and ω̃ is another diagonal matrix whose mth diagonal element is
equal to ω̃(m).

The second relation in (2.11.10) can be written as

H · FT ·Φ ·RT = ω̃, (2.11.11)

yielding

H · ω ·RT = ω̃, (2.11.12)
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and then

H = ω̃ ·R−T · ω−1, R = ω̃ ·H−T · ω−1. (2.11.13)

If ω(j) = 1 and ω̃(j) = 1 for any j, that is, the two sets of base vectors
are orthonormal, then H = R−T and R = H−T,

2.11.6 Confirmation by code

The transformation rules between and untilded and tilded bases de-
rived in this section are confirmed by the following Matlab code named
trans1, located in directory Trans of Tunlib. In this implementa-
tion, the tilded base arises from the untilded base in terms of a specified
matrix, H:

%----------

% covariant b

% bcov1 and bcov2

%----------

thcov1 = 0.034*pi; % arbitrary

thcov2 = 0.334*pi; % arbitrary

lb1 = 1.4; % arbitrary

lb2 = 1.8; % arbitrary

bcov1(1) = lb1*cos(thcov1); bcov1(2) = lb1*sin(thcov1);

bcov2(1) = lb2*cos(thcov2); bcov2(2) = lb2*sin(thcov2);

%---

% contravariant

% bcon1 and bcon2

%

% rotated by 90

%---

thcon1 = thcov2 - 0.5*pi;

thcon2 = thcov1 + 0.5*pi;

lc1 = 2.4; % arbitrary
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lc2 = 1.2; % arbitrary

bcon1(1) = lc1*cos(thcon1); bcon1(2) = lc1*sin(thcon1);

bcon2(1) = lc2*cos(thcon2); bcon2(2) = lc2*sin(thcon2);

omg(1) = bcov1*bcon1';

omg(2) = bcov2*bcon2';

omgmat = [ omg(1), 0.0;

0.0, omg(2)];

%---

% matrix F

%---

F = [ bcov1(1), bcov2(1) ;

bcov1(2), bcov2(2) ];

%---

% matrix H (arbitrary)

%---

H = [ -1.2 3.3;

4.3 -1.1];

Hinv = inv(H);

%---

% covariant

% tilded base vectors

%---

bcovt1 = H(1,1)*bcov1 + H(1,2)*bcov2;

bcovt2 = H(2,1)*bcov1 + H(2,2)*bcov2;

%---

% matrix Ftilde

%---

Ft = [ bcovt1(1), bcovt2(1) ;
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bcovt1(2), bcovt2(2) ];

%---

% contravariant tilde base vectors

% in terms of a matrix

%---

omgtmat = [ 1.9, 0.0; % arbitrary

0.0 1.4];

Phit = inv(Ft')*omgtmat;

bcont1(1) = Phit(1,1); bcont1(2) = Phit(2,1);

bcont2(1) = Phit(1,2); bcont2(2) = Phit(2,2);

omgt(1) = bcovt1*bcont1';

omgt(2) = bcovt2*bcont2';

%---

% confirm H and Hinv by (3.7.2)

%---

Hconf = [bcovt1*bcon1'/omg(1) bcovt1*bcon2'/omg(2);

bcovt2*bcon1'/omg(1) bcovt2*bcon2'/omg(2)];

Hinvconf = [bcov1*bcont1'/omgt(1) bcov1*bcont2'/omgt(2);

bcov2*bcont1'/omgt(1) bcov2*bcont2'/omgt(2)];

HHconf = [H Hconf]

Hinvconf = [Hinv Hinvconf]

%---

% confirm bcov

%---

bcov1conf = Hinv(1,1)*bcovt1 + Hinv(1,2)*bcovt2;

bcov2conf = Hinv(2,1)*bcovt1 + Hinv(2,2)*bcovt2;

bcovconf = [bcov1 bcov1conf;
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bcov2 bcov2conf]

%---

% matrix R

%---

R = [bcont1*bcov1'/omg(1) bcont1*bcov2'/omg(2);

bcont2*bcov1'/omg(1) bcont2*bcov2'/omg(2)];

Rinvconf = [bcon1*bcovt1'/omgt(1) bcon1*bcovt2'/omgt(2);

bcon2*bcovt1'/omgt(1) bcon2*bcovt2'/omgt(2)];

Rinv = inv(R);

RRinvconf = [Rinv Rinvconf]

Running the code generates the following output:

HHconf =

-1.2000 3.3000 -1.2000 3.3000

4.3000 -1.1000 4.3000 -1.1000

HHinvconf =

0.0855 0.2564 0.0855 0.2564

0.3341 0.0932 0.3341 0.0932

bcovconf =

1.3920 0.1493 1.3920 0.1493

0.8967 1.5607 0.8967 1.5607

RRinvconf =

-1.7168 8.3491 -1.7168 8.3491

3.0351 -1.3730 3.0351 -1.3730

The first pair of columns is equal to the second pair of columns, as
required.

2.11.7 Cartesian base

If the tilded base vectors constitute a Cartesian base,

b̃i = b̃i = ei (2.11.14)

for i = 1, . . . , N , the matrix ω̃ is the unit matrix, F̃ = Φ̃, and F̃ =
F̃−T, which shows that the matrix F̃ is orthogonal.
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2.11.8 Standard Cartesian base

If the tilded base vectors are the standard Cartesian base vectors,

b̃i = b̃i = ǫi (2.11.15)

for i = 1, . . . , N , the matrix ω̃ is the unit matrix, F̃ = Φ̃ = I, and
consequently, H = F−T and R = Φ−T. The determinant of the tilde
components

Exercise

2.11.1 Run the code trans1 with a different set of tilde and untilded
base vectors.

2.12 Transformation of vector components

A vector can be resolved in terms of covariant or contravariant base
vectors in an untilded or tilded base, as discussed in Section 2.7. A
relation between the corresponding vector components can be estab-
lished.

2.12.1 Transformation of contravariant vector components

A vector, v, can be resolved in terms of covariant base vectors as

v = vi bi = ṽj b̃j, (2.12.1)

where ṽj are the contravariant vector components in the tilded base.
Substituting into the first expansion of (2.12.1) the linear expansion

bi = H−1
ij b̃j, we obtain

v = viH−1
ij b̃j = ṽj b̃j , (2.12.2)

which shows that

ṽj = H−1
ij vi = H−T

ji vi. (2.12.3)

Inverting this relation, we obtain

vj = HT
ji ṽ

i = Hij ṽ
i. (2.12.4)
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We see that the contravariant tilded components arise from the con-
travariant untilded components, and vice versa, by a simple transfor-
mation.

2.12.2 Transformation of covariant vector components

A vector, v, may also be resolved in terms of contravariant base vectors
as

v = vi b
i = ṽi b̃

i. (2.12.5)

Working in a similar fashion, we obtain

ṽj = R−1
ij vi = R−T

ji vi, (2.12.6)

and thus

vj = RT
ji vi = Rij vi. (2.12.7)

We see that the covariant tilded components arise from the covariant
untilded components, and vice versa, by a simple transformation.

2.12.3 Confirmation by code

The following lines of code, continuing code trans1 listed in Section
2.7, confirm the vector component transformation rules:

%---

% arbitrary vector

%---

v = [1.1, -2.1];

%---

% vector components

%---

vcon1 = v*bcon1'/omg(1);

vcon2 = v*bcon2'/omg(2);

vcont1 = v*bcont1'/omgt(1);
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vcont2 = v*bcont2'/omgt(2);

vcov1 = v*bcov1'/omg(1);

vcov2 = v*bcov2'/omg(2);

vcovt1 = v*bcovt1'/omgt(1);

vcovt2 = v*bcovt2'/omgt(2);

%---

% confirm the transformation rules

%---

vvcont = [vcont1, Hinv(1,1)*vcon1+Hinv(2,1)*vcon2;

vcont2, Hinv(1,2)*vcon1+Hinv(2,2)*vcon2]

vvcon = [vcon1, H(1,1)*vcont1+H(2,1)*vcont2;

vcon2, H(1,2)*vcont1+H(2,2)*vcont2]

vvcovt = [vcovt1, Rinv(1,1)*vcov1+Rinv(2,1)*vcov2;

vcovt2, Rinv(1,2)*vcov1+Rinv(2,2)*vcov2]

vvcov = [vcov1, R(1,1)*vcovt1+R(2,1)*vcovt2;

vcov2, R(1,2)*vcovt1+R(2,2)*vcovt2]

Running the code generates the following output:

vvcont =

-0.3551 -0.3551

0.3116 0.3116

vvcon =

1.7658 1.7658

-1.5144 -1.5144

vvcovt =

-4.7484 -4.7484

5.5405 5.5405

vvvov =

0.4480 0.4480
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-1.3111 -1.3111

The first column is equal to the second column, as required.

2.12.4 Cartesian bases

The transformation rules derived in this section are generalizations of
those stated in (1.8.13), for two Cartesian bases, repeated below for
convenience,

c̃ = Q · c, c = QT · c̃, (2.12.8)

where Q is an orthogonal transformation matrix.

Exercise

2.12.1 Explain how relations (2.12.8) arise from the transformations
derived in this section.

2.13 Transformation of tensor components

A tensor, T, can be resolved with respect to its pure contravariant
components in an untilded or tilded base as

T = T ij bi ⊗ bj = T̃ pq b̃p ⊗ b̃q, (2.13.1)

where summation is implied over the repeated indices, i, j, p, and q.

2.13.1 Transformation of contravariant tensor components

Substituting into the first expression in (2.13.1) the expansions

bi = H−1
ip b̃p, bj = H−1

jq b̃q, (2.13.2)

we obtain

T = T ijH−1
ip H−1

jq b̃p ⊗ b̃q = T̃ pq b̃p ⊗ b̃q, (2.13.3)

which shows that

T̃ pq = H−T
pi T ij H−1

jq , (2.13.4)
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where −T denotes the transpose of the inverse, which is equal to the
inverse of the transpose. Inverting this relation, we obtain

T pq = HT
pi T̃

ij Hjq. (2.13.5)

We see that the contravariant tilded components arise from the con-
travariant untilded components, and vice versa, by a simple transfor-
mation.

2.13.2 Transformation of covariant tensor components

Working in a similar fashion, we find that

T̃pq = R−T
pi Tij R

−1
jq , Tpq = RT

piT̃ij Rjq. (2.13.6)

These relations are the same as those shown in (2.13.4) and (2.13.5)
with H replaced by R.

2.13.3 Transformation of mixed tensor components

Working in a similar fashion, we find the following transformation rules
for mixed tensor components,

T̃ p
◦q = H−T

pi T
i
◦jR

−1
jq , T p

◦q = HT
piT̃

i
◦jRjq (2.13.7)

and

T̃ ◦q
p = R−T

pi T
◦j
i H

−1
jq , T ◦q

p = R−1
pi T̃

◦j
i Hjq. (2.13.8)

These relations are the same as those shown in (2.13.4) and (2.13.5)
with H partially replaced by R.

2.13.4 Determinants

Taking the determinant of (2.13.4), and recalling that the determinant
of a matrix inverse is equal to the inverse of the determinant, we obtain

det[T̃ pq] =
1

det2(H)
det[T ij]. (2.13.9)

Taking the determinant of the first relation in (2.13.6), we obtain the
counterpart of (2.13.9) ,

det[T̃pq] =
1

det2(R)
det[Tij ]. (2.13.10)
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Taking the determinants of the first relations in (2.13.7) and (2.13.8),
we find that

det[T̃ p
◦q] =

1

det(R) det(H)
det[T p

◦q] (2.13.11)

and

det[T̃ ◦q
p ] =

1

det(R) det(H)
det[T ◦q

p ]. (2.13.12)

These determinants should not be confused with that of the tensor, T.

2.13.5 Confirmation by code

The following Matlab code named trans2, located in directory Trans

of Tunlib, confirms these transformation rules:

%----------

% bcov1 and bcov2 (covariant base vectors)

%----------

thbcov1 = 0.034*pi; % arbitrary

thbcov2 = 0.334*pi; % arbitrary

lb1 = 1.4; % arbitrary

lb2 = 1.8; % arbitrary

bcov1(1) = lb1*cos(thbcov1); bcov1(2) = lb1*sin(thbcov1);

bcov2(1) = lb2*cos(thbcov2); bcov2(2) = lb2*sin(thbcov2);

%---

% bcon1 and bcon2 (contravariant base vector)

%---

thbcon1 = thbcov2 - 0.5*pi;

thbcon2 = thbcov1 + 0.5*pi;

lc1 = 2.4; % arbitrary

lc2 = 1.2; % arbitrary

bcon1(1) = lc1*cos(thbcon1); bcon1(2) = lc1*sin(thbcon1);
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bcon2(1) = lc2*cos(thbcon2); bcon2(2) = lc2*sin(thbcon2);

%---

% projections

%---

omg(1) = bcov1*bcon1';

omg(2) = bcov2*bcon2';

%---

% tensor T

%---

T = [ 1 2; % arbitrary

3 4];

%---

% con-cov components

%---

Tnv(1,1) = bcon1*T*bcov1'/(omg(1)*omg(1));

Tnv(1,2) = bcon1*T*bcov2'/(omg(1)*omg(2));

Tnv(2,1) = bcon2*T*bcov1'/(omg(2)*omg(1));

Tnv(2,2) = bcon2*T*bcov2'/(omg(2)*omg(2));

%---

% cov-con components

%---

Tvn(1,1) = bcov1*T*bcon1'/(omg(1)*omg(1));

Tvn(1,2) = bcov1*T*bcon2'/(omg(1)*omg(2));

Tvn(2,1) = bcov2*T*bcon1'/(omg(2)*omg(1));

Tvn(2,2) = bcov2*T*bcon2'/(omg(2)*omg(2));

%---

% cov-cov components

%---

Tvv(1,1) = bcov1*T*bcov1'/(omg(1)*omg(1));

Tvv(1,2) = bcov1*T*bcov2'/(omg(1)*omg(2));
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Tvv(2,1) = bcov2*T*bcov1'/(omg(2)*omg(1));

Tvv(2,2) = bcov2*T*bcov2'/(omg(2)*omg(2));

%---

% con-con components

%---

Tnn(1,1) = bcon1*T*bcon1'/(omg(1)*omg(1));

Tnn(1,2) = bcon1*T*bcon2'/(omg(1)*omg(2));

Tnn(2,1) = bcon2*T*bcon1'/(omg(2)*omg(1));

Tnn(2,2) = bcon2*T*bcon2'/(omg(2)*omg(2));

%---

% matrix H

%---

H = [ -1.2 3.3; % arbitrary

4.3 -1.1];

Hinv = inv(H);

%---

% tilde base vectors

%---

bcovt1 = H(1,1)*bcov1 + H(1,2)*bcov2;

bcovt2 = H(2,1)*bcov1 + H(2,2)*bcov2;

%---

% contravariant tilde base vectors

% computed in terms of a matrix

%---

AMAT = [ bcovt1(1), bcovt2(1);

bcovt1(2), bcovt2(2)];

omgtMAT = [ 1.9, 0.0; % arbitrary

0.0 1.4];
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BMAT = inv(AMAT')*omgtMAT;

bcont1(1) = BMAT(1,1); bcont1(2) = BMAT(2,1);

bcont2(1) = BMAT(1,2); bcont2(2) = BMAT(2,2);

omgt(1) = bcovt1*bcont1';

omgt(2) = bcovt2*bcont2';

%---

% matrix R

%---

R = [bcont1*bcov1'/omg(1) bcont1*bcov2'/omg(2);

bcont2*bcov1'/omg(1) bcont2*bcov2'/omg(2)];

Rinv = inv(R);

%---

% con-cov components

%---

Tnvt(1,1) = bcont1*T*bcovt1'/(omgt(1)*omgt(1));

Tnvt(1,2) = bcont1*T*bcovt2'/(omgt(1)*omgt(2));

Tnvt(2,1) = bcont2*T*bcovt1'/(omgt(2)*omgt(1));

Tnvt(2,2) = bcont2*T*bcovt2'/(omgt(2)*omgt(2));

%---

% cov-con components

%---

Tvnt(1,1) = bcovt1*T*bcont1'/(omgt(1)*omgt(1));

Tvnt(1,2) = bcovt1*T*bcont2'/(omgt(1)*omgt(2));

Tvnt(2,1) = bcovt2*T*bcont1'/(omgt(2)*omgt(1));

Tvnt(2,2) = bcovt2*T*bcont2'/(omgt(2)*omgt(2));

%---

% cov-cov components

%---
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Tvvt(1,1) = bcovt1*T*bcovt1'/(omgt(1)*omgt(1));

Tvvt(1,2) = bcovt1*T*bcovt2'/(omgt(1)*omgt(2));

Tvvt(2,1) = bcovt2*T*bcovt1'/(omgt(2)*omgt(1));

Tvvt(2,2) = bcovt2*T*bcovt2'/(omgt(2)*omgt(2));

%---

% con-con components

%---

Tnnt(1,1) = bcont1*T*bcont1'/(omgt(1)*omgt(1));

Tnnt(1,2) = bcont1*T*bcont2'/(omgt(1)*omgt(2));

Tnnt(2,1) = bcont2*T*bcont1'/(omgt(2)*omgt(1));

Tnnt(2,2) = bcont2*T*bcont2'/(omgt(2)*omgt(2));

%---

% confirm

%---

Tconf = [Tnvt Hinv'*Tnv*Rinv;

Tvnt Rinv'*Tvn*Hinv;

Tvvt Rinv'*Tvv*Rinv;

Tnnt Hinv'*Tnn*Hinv]

%---

% confirm determinants

%---

detH = det(H);

detR = det(R);

Detconf = [det(Tnvt) det(Tnv)/detR/detH;

det(Tvnt) det(Tvn)/detR/detH;

det(Tvvt) det(Tvv)/detR/detR;

det(Tnnt) det(Tnn)/detH/detH]

Running the code generates the following output:

Tconf =

2.6240 1.5393 2.6240 1.5393

0.5060 0.0103 0.5060 0.0103

2.6020 1.0350 2.6020 1.0350
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0.8275 0.0402 0.8275 0.0402

36.7177 21.3738 36.7177 21.3738

11.5097 1.4001 11.5097 1.4001

0.1859 0.0746 0.1859 0.0746

0.0365 -0.0010 0.0365 -0.0010

Detconf =

-0.7519 -0.7519

-0.7519 -0.7519

-194.5988 -194.5988

-0.0029 -0.0029

As expected, the first pair of columns is identical to the second pair.

2.13.6 Determinant of a tensor

If the tilded base vectors constitute a Cartesian base,

b̃i = b̃i = ei (2.13.13)

for i = 1, . . . , N , the matrices F̃ = Φ̃ are orthogonal with unit de-
terminant and ω̃ is the identity matrix. From the third equations in
(2.11.9) and (2.11.4), we find that

det(H) =
1

det(F)
≡ 1

J◦

, (2.13.14)

and

det(R) =
1

det(Φ)
≡ 1

J ◦
, (2.13.15)

as shown in (2.2.10). The determinant of the tilde components in the
expressions derived in Section 2.5 is equal to the tensor determinant,

det(T) = J 2
◦ det[T ij ] = J ◦2 det[Tij ] (2.13.16)

and

det(T) = det(ω) det[T p
◦q] = det(ω) det[T ◦q

p ]. (2.13.17)
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Exercise

2.13.1 Confirm by computation that, if the second base vector are the
standard Cartesian vectors, b̃i = ǫi, and b̃i = ǫi, the determinants of
the tilde components is equal to the matrix determinant, det(T).

2.14 High-order tensors

Biorthogonal bases can be employed to describe third- and higher-order
indexed tensors.

For a three-index tensor, we may write

T = T ijk bi ⊗ bj ⊗ bk, (2.14.1)

and also

T = Tijk b
i ⊗ bj ⊗ bk, (2.14.2)

where T ijk are pure contravariant components, Tijk are pure covariant
components, and summation is implied over the repeated indices, i, j,
and k.

Moreover, we may introduce expansions in mixed components, such
as the expansion

T = T ◦j
i◦k b

i ⊗ bj ⊗ bk, (2.14.3)

in this and other combinations of tensor components.

2.14.1 Component conversion

Contravariant, covariant, and mixed tensor components can be deduced
from one another, as discussed in Section 2.8 for two-index components.

For example, multiplying (2.14.2) and (2.14.3) from the left with
bm and from the right with bn, we find that

bm ·T · bn = Tmjn ω
(m) ω(n) bj = T ◦j

m◦n ω
(m) ω(n) bj , (2.14.4)
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wherem and n are free indices. Now multiplying through this expression
by bp, where p is a free index, we obtain

bp · (bm ·T · bn) = Tmpn ω
(m) ω(n) ω(p) = T ◦j

m◦k ω
(m) ω(n) bjp,

(2.14.5)

and then
Tmpn =

1

ω(p)
T ◦j
m◦k bjp, (2.14.6)

which implements the usual rule for lowering an index.

From the first equality in (2.14.5), we find that

Tmpn =
1

ω(m) ω(n) ω(p)
bp · (bm ·T · bn), (2.14.7)

where

bp · (bm ·T · bn) = (bp)j ω
(j)(bm)i ω

(i)(bn)k ω
(k) T ijk, (2.14.8)

and summation is implied over the repeated indices, i, j, and k.

Exercises

2.14.1 Enumerate possible expansion combinations of three-index ten-
sors.

2.14.2 Derive tensor transformation rules for the purely contravariant
components of a three-index tensor.

2.15 Alternating tensor

We restrict our attention to three dimensions, N = 3, and construct
the alternating tensor from the representations

ξ = ξijk bi ⊗ bj ⊗ bk = ξ◦jki bi ⊗ bj ⊗ bk

= · · · = ξijk b
i ⊗ bj ⊗ bk, (2.15.1)

where ξijk, . . . , ξijk are tensor components.
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2.15.1 Contravariant and covariant components

We will confirm that the contravariant and covariant components of
the alternating tensor are given by

ξijk =
1

J◦

ǫijk, ξijk =
1

J ◦
ǫijk, (2.15.2)

in agreement with the representation (1.16.7) in terms of an arbitrary
trio of vectors, where ǫijk is the Levi–Civita symbol,

J◦ = [b1,b2,b3 ], J ◦ = [b1,b2,b3 ] (2.15.3)

are the covariant and contravariant Jacobian metrics satisfying

J◦J ◦ = det(ω) (2.15.4)

and

[u,v,w] ≡ (u× v) ·w (2.15.5)

is the triple mixed product representing the volume of the parallelepiped
whose edges are three arbitrary vectors, u, v, and w. Cyclic permuta-
tion of u, v, w, preserves the triple mixed product; non-cyclic permu-
tation preserves the magnitude but changes the sign.

Consequently,

ξ =
1

J◦

ǫijk bi ⊗ bj ⊗ bk =
1

J ◦
ǫijk b

i ⊗ bj ⊗ bk. (2.15.6)

Projecting this expansion from the left with bp, from the right with
bq, and then with bn, we obtain

(bp) · (bm · ξ · bn) =
1

J◦

ǫijk bpi bqj bnk

=
1

J ◦
ǫijk ω

(p) ω(q) ω(n) δpi δqj δnk, (2.15.7)

and therefore

J ◦ǫijk bpi bqj bnk = J◦ ǫpqn ω
(p) ω(q) ω(n). (2.15.8)
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Rearranging, we find that

ǫpqn = c ǫijk bip bjq bkn, (2.15.9)

where

c =
J ◦

J◦

1

det(ω)
=

1

J 2
◦

=
1

det(b)
, (2.15.10)

which is an identity, as shown in (2.4.17).

2.15.2 Cross product of two vectors

The cross product of two vectors, v and u, is given by

w ≡ v × u = ξ : (v ⊗ u). (2.15.11)

We find that

w = (
1

J◦

ǫijk bi ⊗ bj ⊗ bk) : (vpuq b
p ⊗ bq), (2.15.12)

which can be restated as

w =
1

J◦

ǫijkvpuq (bi ⊗ bj ⊗ bk) : (b
p ⊗ bq), (2.15.13)

and then

w =
1

J◦

ǫijk vjuk ω
(j)ω(k) bi =

1

J◦

det(ω) ǫijk vjuk
1

ω(i)
bi. (2.15.14)

Simplifying, we obtain

w = J ◦ ǫijk vjuk
1

ω(i)
bi, (2.15.15)

which reproduces the first expression in (2.4.12).

Exercise

2.15.1 Prove the derivation shown in (2.15.14).
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Chapter 3

Introduction to
non-Cartesian coordinates

Non-Cartesian, rectilinear or curvilinear coordinates are employed to
accommodate the geometry of a particular domain of interest in solv-
ing partial differential equations equations by analytical or numerical
methods. The main reason for using such coordinates in science and
engineering applications is to facilitate the implementation in boundary
conditions.

For example, if a solution is sought inside a sphere of radius a, then
it is desirable to use spherical polar coordinates so that the boundary
of the solution domain is described by r = a, where r is the distance
from the origin. If the solution domain is a channel with wavy walls,
pertinent boundary-fitted coordinates are employed.

In this chapter, we illustrate fundamental notions and concepts un-
derlying the construction and usage of curvilinear coordinates in two
dimensions. The discussion is an extension of that presented Chapter
2 on biorthogonal vector and tensor bases. Following the derivation
of fundamental definitions and expressions, we will develop and im-
plement finite-difference methods for solving the Laplace and Poisson
equations. Other linear differential equations can be solved by similar
methods. The discussion will be extended, completed, and formalized
in Chapter 4.

139
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x

x 2

x 1
g

1

x2

x1
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g

g1

2g

y

x

Figure 3.1.1 Illustration of curvilinear coordinates in a plane:
(g1, g2) are the covariant base vectors and (g1, g2) are the con-
travariant base vectors. Correspondingly, (x1, x2) are the con-
travariant coordinates and (x1, x2) are the covariant coordinates.

3.1 Covariant base vectors

and contravariant coordinates

Consider two continuous intersecting families of generally curved lines
in the xy plane, parametrized by two variables, (x1, x2), called con-
travariant coordinates, as shown in Figure 3.1.1. For reasons that will
become evident in hindsight, the indices were written intentionally as
superscripts instead of subscripts. To be clear, the dashed coordinate
lines shown in Figure 3.1.1 are constructed by holding x1 or x2 constant.

3.1.1 Position

The Cartesian components of the position, x = (x, y), can be regarded
as functions of x1 and x2,

x(x1, x2). (3.1.1)

For example, we may denote for convenience ξ = x1 and η = x2, and
consider contravariant coordinates lines described by

x = 2π(ξ + α η2)L,

y = (1− β ξη) cos(2πξ)L+ γη L, (3.1.2)
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Figure 3.1.2 Contravariant coordinate lines described by equations
(3.1.2) with α = 0.1, β = 1, and γ = 2, for 0 ≤ x1 < 1 and
0 ≤ x2 < 1. (a) Cartesian lines in a parametric square, (b)
corresponding coordinate lines in the xy plane, and (c) covariant
base vector field.

where ξ, η are dimensionless curvilinear coordinates, L is a fixed length,
and α, β, γ are dimensionless constants Coordinate lines for 0 ≤ ξ < 1
and 0 ≤ η < 1 generated using these expressions for α = 0.1, β = 1.0,
γ = 2.0 are shown in Figure 3.1.2.

3.1.2 Covariant base vectors

Next, we introduce a pair of tangential base vectors, named the covari-
ant base vectors, defined as partial derivatives of the position vector,
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g1 ≡
∂x

∂x1
, g2 ≡

∂x

∂x2
, (3.1.3)

as shown in Figure 3.1.1. The derivative with respect to x1 is taken
under constant x2 and the derivative with respect to x2 is taken under
constant x1. In Cartesian component form,

g1 =
∂x

∂x1
ex +

∂y

∂x1
ey, g2 =

∂x

∂x2
ex +

∂y

∂x2
ey, (3.1.4)

where ex and ey are unit vectors along the x and y axes. The covariant
base vectors, g1 and g2, are unit vectors only if the coordinates x

1 and
x2 measure physical arc length in their respective directions.

For the coordinates described in (3.1.2), we find by straightforward
differentiation that

g1 =
∂x

∂ξ
= 2π ex +

(
− βη cos(2πξ)− 2π(1− β ξη) sin(2πξ)

)
ey,

g2 =
∂x

∂η
= 4παη ex +

(
− β ξ cos(2πξ) + γ

)
ey. (3.1.5)

In this case, because the parameters ξ and η do not express physical
arc length along corresponding lines, g1 and g2 are not unit vectors.

3.1.3 Orthogonal coordinates

The ordered doublet (x1, x2) comprises a pair of generally non-orthogonal
curvilinear coordinates with associated covariant base vectors (g1, g2).
If the lines of constant x1 and x2 are straight, the coordinates are rec-
tilinear. If the angle subtended between the two vectors g1 and g2

is equal to 90◦ at every point in the xy plane, we obtain orthogonal
rectilinear or curvilinear coordinates.

3.1.4 Differential displacement

An infinitesimal displacement vector in the xy plane at a point, x, can
be expressed as

dx =
∂x

∂x1
dx1 +

∂x

∂x2
dx2, (3.1.6)
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where dx1 and dx2 are differential increments regarded as contravariant
components of dx. In terms of the covariant base vectors as

dx = g1 dx
1 + g2 dx

2. (3.1.7)

Given expressions for the covariant base vectors g1 and g2 in terms of x1

and x2, equation (3.1.7) can be integrated analytically or numerically to
provide us with an explicit expression for the position vector, x(x1, x2).

3.1.5 Covariant metric coefficients

It will be useful to introduce the covariant components of the metric

tensor, also called the covariant metric coefficients, defined as

g11 ≡ g1 · g1 = |g1|2, g22 ≡ g2 · g2 = |g2|2,
g12 = g21 ≡ g1 · g2 = g2 · g1. (3.1.8)

These coefficients can be collected into a symmetric matrix of covariant
metric coefficients, denoted by

g ≡
[
g11 g12
g21 g22

]
. (3.1.9)

The determinant of this matrix is

g ≡ det(g) = g11g22 − g212. (3.1.10)

If g1 and g2 are unit vectors, g11 = 1 and g22 = 1.

If the coordinates are orthogonal, g12 = 0 and g21 = 0. More
generally, we denote by θ the angle between g1 and g2, and use the
geometrical interpretation of the dot product to write

g12 ≡ g1 · g2 = |g1||g2| cos θ. (3.1.11)

Substituting this expression into (3.1.10), we obtain

g = |g1|2|g2|2(1− cos2 θ) = |g1|2|g2|2 sin2 θ, (3.1.12)

yielding

g = |g1 × g2|2. (3.1.13)
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We see that
√
g is the area of a parallelogram whose sides are defined

by the base vectors g1 and g2.

3.1.6 Fundamental form of a plane

Using the definitions of the covariant metric coefficients, we find that
the square of the magnitude of a differential displacement is given by

dx · dx = (gi dx
i) · (gj dx

j), (3.1.14)

where summation is implied over the repeated indices, i and j. Carrying
out the multiplications and invoking the definition of the covariant
metric coefficients, we find that

dx · dx = gij dx
i dxj . (3.1.15)

The expansion given in (3.1.15) constitutes the fundamental form of a
plane.

3.1.7 Extracting differential coordinates

In the general case of non-orthogonal curvilinear coordinates where
the variables x1 and x2 do not measure physical arc length from a
designated origin,

g1 · g2 6= 0, g1 · g1 6= 1, g2 · g2 6= 1. (3.1.16)

The first inequality expressing non-orthogonality prevents us from com-
puting the differential components dx1 and dx2 in (3.1.7) by projecting
the differential of the position vector given in (3.1.7) onto each base
vector, that is,

dx1 6= dx · g1
1

g1 · g1
, dx2 6= dx · g2

1

g2 · g2
. (3.1.17)

Instead, the differential components must be found by solving a sys-
tem of linear two equations for two unknowns originating by projecting
equation (3.1.7) onto g1 or g2,

g11 dx
1 + g12 dx

2 = dx · g1,

g21 dx
1 + g22 dx

2 = dx · g2. (3.1.18)
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Using Cramer’s rule, we find that

dx1 =
1

g
dx ·

(
g22 g1 − g12 g2

)
,

dx2 =
1

g
dx ·

(
− g12 g1 + g11 g2

)
, (3.1.19)

where g = g11g22 − g212, as given in (3.1.10).

3.1.8 Contravariant base vectors

The right-hand sides of the two expressions in (3.1.19) motivate intro-
ducing a pair of base vectors,

g1 ≡ 1

g

(
g22 g1 − g12 g2

)
,

g2 ≡ 1

g

(
− g12 g1 + g11 g2

)
, (3.1.20)

called the contravariant base vectors. Equations (3.1.19) may then be
expressed in the compact form

dx1 = dx · g1, dx2 = dx · g2. (3.1.21)

According to these formulas, dx1 and dx2 can be extracted from dx
merely by two projections.

3.1.9 Covariant from contravariant base vectors

Conversely, the covariant base vectors arise from the contravariant base
vectors as

g1 = g11 g
1 + g12 g

2, g2 = g12 g
1 + g22 g

2, (3.1.22)

which provide us with formulas for lowering the indices,

gi = gijg
j. (3.1.23)

In the case of orthogonal coordinates, g12 = 0, the base vector g1 is
parallel to g1 and the base vector g2 is parallel to g2.
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3.1.10 Biorthonormality

Using the definitions (3.1.20), we find that

g1 · g1 = 1, g2 · g1 = 0, g1 · g2 = 0, g2 · g2 = 1, (3.1.24)

which reveals that g2 is orthogonal to g1 and g1 is orthogonal to g2,
as shown in Figure 3.1.1. We have thus arrived at the biorthonormality
condition

gi · gj = δij , (3.1.25)

where δij is Kronecker’s delta. The covariant base vectors, g
i, and the

contravariant base vectors, gj , constitute a biorthonormal set.

3.1.11 Confirmation by code

a Matlab code named nonortho, located in directory Nonortho of
Tunlib, defines a pair of arbitrary covariant base vectors and computes
the associated contravariant base vectors. In the numerical implemen-
tation, the contravariant base vectors are computed as rotations of the
covariant base vectors by π/2, followed by normalization:

%----------

% define two arbitrary covariant base vectors

% gcov1 and gcov2

%----------

ancov1 = 0.034*pi; % arbitrary angle

ancov2 = 0.334*pi; % arbitrary angle

lcov1 = 1.4; % arbitrary length

lcov2 = 1.8; % arbitrary length

gcov1(1) = lcov1*cos(ancov1); gcov1(2) = lcov1*sin(ancov1);

gcov2(1) = lcov2*cos(ancov2); gcov2(2) = lcov2*sin(ancov2);

%---

% covariant components of the metric tensor

%---
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covmet(1,1) = gcov1(1)*gcov1(1) + gcov1(2)*gcov1(2);

covmet(1,2) = gcov1(1)*gcov2(1) + gcov1(2)*gcov2(2);

covmet(2,1) = covmetric(1,2);

covmet(2,2) = gcov2(1)*gcov2(1) + gcov2(2)*gcov2(2);

covg = det(covmetric); % determinant

%---

% compute the associated contravariant base vectors

% gcon1 and gcon2

%---

ancon1 = ancov2 - 0.5*pi;

ancon2 = ancov1 + 0.5*pi;

lcon1 = 2.4; % arbitrary

lcon2 = 1.2; % arbitrary

gcon1(1) = lcon1*cos(ancon1); gcon1(2) = lcon1*sin(ancon1);

gcon2(1) = lcon2*cos(ancon2); gcon2(2) = lcon2*sin(ancon2);

%---

% normalize the contravariant base vectors

% so that cov1*con1 = 1, cov2*con2 = 1,

%---

norm1 = gcov1(1)*gcon1(1) + gcov1(2)*gcon1(2);

norm2 = gcov2(1)*gcon2(1) + gcov2(2)*gcon2(2);

gcon1(1) = gcon1(1)/norm1;

gcon1(2) = gcon1(2)/norm1;

gcon2(1) = gcon2(1)/norm2;

gcon2(2) = gcon2(2)/norm2;

%---

% another way of computing gcon1 and gcon2

% explicitly in terms of gcov1 and gcov2

%---
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gcon1A = ( covmet(2,2)*gcov1 ...

- covmet(1,2)*gcov2)/covg;

gcon2A = (-covmet(1,2)*gcov1 ...

+ covmet(1,1)*gcov2)/covg;

%---

% another way of computing the covariant base vectors

% explicitly in terms of gcon1 and gcon2

%---

gcov1A = covmet(1,1)*gcon1 + covmet(1,2)*gcon2;

gcov2A = covmet(1,2)*gcon1 + covmet(2,2)*gcon2;

%---

% print

%---

[gcov1 gcov2;

gcov1A gcov2A;

gcon1 gcon2;

gcon1A gcon2A]

Running the code generates the following output:

1.3920 0.1493 0.8967 1.5607

1.3920 0.1493 0.8967 1.5607

0.7655 -0.4399 -0.0732 0.6828

0.7655 -0.4399 -0.0732 0.6828

as instructed by the last line of the code. As expected, the first pair of
lines and the second pair of lines of the output are identical.

Exercises

3.1.1 Prepare a plot of g ≡ det(g) in the ξη plane corresponding to
(3.1.2).



D
R
A
F
T

3.2 Contravariant base vectors 149

3.1.2 Derive expressions for the covariant base vectors corresponding
to the coordinates described in (3.1.2).

3.2 Contravariant base vectors

The contravariant base vectors were given in (3.1.20) in terms of the
covariant base vectors, repeated below for convenience,

g1 ≡ 1

g

(
g22 g1 − g12 g2

)
,

g2 ≡ 1

g

(
− g12 g1 + g11 g2

)
. (3.2.1)

Using expression (3.1.7) for a differential displacement, we find that

g1 · dx =
1

g

(
g22 g1 − g12 g2

)
· (g1 dx

1 + g2 dx
2). (3.2.2)

Carrying out the multiplications, we find that

g1 · dx = dx1. (3.2.3)

Working in a similar fashion, we find that

gi · dx = dxi (3.2.4)

for i = 1, 2, as shown in (3.1.21). Integrating this equation between
two points, A and B, we find that

∫ B

A

gi · dx = (xi)B − (xi)A. (3.2.5)

Consequently,

∮
gi · dx = 0, (3.2.6)

where the integration is performed along an arbitrary closed path in the
xy plane.



D
R
A
F
T

150 Tensors Unravelled, C. Pozrikidis, © 2026

3.2.1 Gradient of contravariant coordinates

The contravariant coordinates are functions of position,

x1(x), x2(x). (3.2.7)

Partial derivatives of x1 and x2 with respect to Cartesian coordinates,
x and y, are well defined. The gradients of these functions are

∇x1 =

[
∂x1/∂x
∂x1/∂y

]
, ∇x2 =

[
∂x2/∂x
∂x2/∂y

]
. (3.2.8)

By definition,

dx = g1 dx
1 + g2 dx

2 (3.2.9)

or

dx = g1 (
∂x1

∂x
dx+

∂x1

∂y
dy) + g2 (

∂x2

∂x
dx+

∂x2

∂y
dy), (3.2.10)

which is the same as

dx = g1 dx ·∇x1 + g2 dx ·∇x2. (3.2.11)

Setting

dx ·∇x1 = dx1, dx ·∇x2 = dx2, (3.2.12)

and comparing these expressions with those given in (3.1.21), we obtain

gi = ∇xi (3.2.13)

for i = 1, 2.

Since the curl of the gradient of any function is identically zero, the
contravariant base vector fields are irrotational

∇× gi = 0. (3.2.14)

Using the Stokes circulation theorem, we find that the circulation of
each contravariant base vector along any arbitrary closed loop in the
xy plane is zero, as shown in (3.2.6).
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Exercise

3.2.1 Prove that the curl of the gradient of any function is identically
zero.

3.3 Covariant coordinates

Consider a one-dimensional field over the x axis, introduce a contravari-
ant coordinate, x1, specify a function x(x1), and write

g1 = g1 ex, g1 = g1 ex, g1 =
dx

dx1
, g1 =

dx1

dx
. (3.3.1)

Now introduce a covariant coordinate, x1, and write

g1 =
dx1

dx
= α

dx

dx1
, (3.3.2)

where α is a specified function. Rearranging, we obtain

dx1
dx

= α
dx

dx1
. (3.3.3)

Integrating this equation, we obtain a covariant coordinate distribution,
x1(x), which clearly depends on the specification of α.

3.3.1 Two dimensions

Now we consider curvilinear coordinates in a plane and draw a family
of non-intersecting lines that are tangential to the first contravariant
base vector, g1, and another family of non-intersecting lines that are
tangential to the second contravariant base vector, g2.

The position along a line in the first family can be parametrized by
a coordinate x1, and the position along a line in the second family can
be parametrized by a coordinate x2, as shown in Figure 3.1.1.

The doublet (x1, x2) comprises covariant curvilinear coordinates.
In contrast, the doublet (x1, x2) associated with the covariant base
vectors g1 and g2 comprises contravariant curvilinear coordinates.
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3.3.2 Differential displacement

The position vector can be regarded as a function of the covariant
coordinates, that is,

x(x1, x2). (3.3.4)

An infinitesimal displacement in the xy plane can be expressed as

dx =
∂x

∂x1
dx1 +

∂x

∂x2
dx2, (3.3.5)

where dx1 and dx2 are differential increments regarded as covariant
components of the differential displacement.

Since by definition ∂x/∂x1 is parallel to g1 and ∂x/∂x2 is parallel
to g2 at every point, we may write

∂x

∂x1
=

1

α1
g1,

∂x

∂x2
=

1

α2
g2, (3.3.6)

where α1(x1, x2) and α2(x1, x2) are two appropriate functions. Conse-
quently, the differential displacement is given by

dx =
1

α1
g1dx1 +

1

α2
g2dx2. (3.3.7)

This expression can be contrasted with the corresponding expression
involving covariant base vectors and contravariant coordinates, dx =
g1dx

1 + g2dx
2.

3.3.3 Relation between covariant and contravariant coordinates

The covariant coordinates, (x1, x2), can be regarded as functions of
the contravariant coordinates, (x1, x2), and vice versa. We may write

dx1 =
∂x1
∂x1

dx1 +
∂x1
∂x2

dx2,

dx2 =
∂x2
∂x1

dx1 +
∂x2
∂x2

dx2. (3.3.8)

Using the chain rule, we write

g1 ≡
∂x

∂x1
=

∂x

∂x1

∂x1
∂x1

+
∂x

∂x2

∂x2
∂x1

=
1

α1

g1∂x1
∂x1

+
1

α2

g2∂x2
∂x1

(3.3.9)
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and

g2 ≡
∂x

∂x2
=

∂x

∂x1

∂x1
∂x2

+
∂x

∂x2

∂x2
∂x2

=
1

α1
g1∂x1
∂x2

+
1

α2
g2∂x2
∂x2

.

(3.3.10)

Projecting these equations onto g1 or g2, we find that

g11 =
1

α1

∂x1
∂x1

, g12 =
1

α1

∂x1
∂x2

=
1

α2

∂x2
∂x1

, g22 =
1

α2

∂x2
∂x2

,

(3.3.11)

which imply that

g11
∂x1
∂x2

= g12
∂x1
∂x1

, g12
∂x2
∂x2

= g22
∂x2
∂x1

. (3.3.12)

Substituting (3.3.11) into (3.3.8), we obtain

dx1 = α1(g11 dx
1 + g12 dx

2),

dx2 = α2(g12 dx
1 + g22 dx

2). (3.3.13)

3.3.4 Compatibility conditions

Equations (3.3.11) require the compatibility conditions

∂(α1g11)

∂x2
=
∂(α1g12)

∂x1
,

∂(α2g22)

∂x1
=
∂(α2g12)

∂x2
. (3.3.14)

Expanding the derivatives and rearranging, we find that

g11
∂ lnα1

∂x2
− g12

∂ lnα1

∂x1
=
∂g12
∂x1

− ∂g11
∂x2

(3.3.15)

and

g22
∂ lnα2

∂x1
− g12

∂ lnα2

∂x2
=
∂g12
∂x2

− ∂g22
∂x1

. (3.3.16)

These compatibility conditions are not necessarily satisfied when α1 = 1
and α2 = 1.
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3.3.5 Construction

Once α1 and α2 have been constructed in agreement with the compat-
ibility conditions, the covariant coordinates can be deduced from the
contravariant coordinates by integrating equations (3.3.11) or (3.3.13).

With reference to the grid in the x1x2 plane shown in Figure 3.1.2(a),
we may specify arbitrarily the distribution of α1 along the bottom grid
line, x2 = 0, and the distribution of α2 along the left grid line, x1 = 0.
In the second step, we may apply forward difference approximations to
the partial derivatives in (3.3.15) to obtain the distribution of α1 along
the second from the bottom grid line.

Similarly, we may apply forward difference approximations to the
partial derivatives in (3.3.16) to obtain the distribution of α2 along the
second from the bottom grid line. The procedure may then be repeated
to construct the entire covariant coordinate nodal field.

3.3.6 Orthogonal coordinates

The compatibility conditions for orthogonal coordinates require that

∂(α1 g11)

∂x2
= 0,

∂(α2 g22)

∂x1
= 0. (3.3.17)

Integrating these equations, we obtain

α1 =
1

g11
A(x1), α2 =

1

g22
B(x2), (3.3.18)

where A(x1) and B(x2) are two arbitrary functions. Integrating equa-
tions (3.3.11), we obtain

x1 =

∫
A(x1) dx1, x2 =

∫
B(x2) dx2. (3.3.19)

For A(x1) = 1 and B(x2) = 1, we find that x1 = x1, x2 = x2, and

∂x

∂x1
= g11 g

1,
∂x

∂x2
= g22 g

2. (3.3.20)



D
R
A
F
T

3.3 Covariant coordinates 155

0

r
y

eθ
er

x

θ

Figure 3.3.1 Illustration of plane polar coordinates, (r, θ), in the
xy plane defined with respect to Cartesian coordinates, (x, y).

3.3.7 Plane polar coordinates

In the case of plane polar coordinates, x1 = r and x2 = θ, where r is
the distance from the original and θ is the polar angle measured around
the origin, as shown in Figure 3.3.1. The Cartesian coordinates are
given by x = r cos θ and x = r sin θ.

The covariant and contravariant base vectors are given by

gr = er, gθ = r eθ, gr = er, gθ =
1

r
eθ, (3.3.21)

and the covariant metric coefficients are given by

grr = 1, grθ = 0, gθθ = r2. (3.3.22)

The compatibility conditions (3.3.17) require that

∂α1

∂θ
= 0,

∂(α2r
2)

∂r
= 0, (3.3.23)

and therefore

α1 = A(r), α2 =
1

r2
B(θ), (3.3.24)

where A(r) and B(θ) are arbitrary functions. Integrating equations
(3.3.11), we obtain

x1 =

∫
A(r) dr, x2 =

∫
B(θ) dθ. (3.3.25)
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Equations (3.3.6) become

∂x

∂x1
=

1

A(r)
er,

∂x

∂x2
=

1

B(θ) r eθ. (3.3.26)

We may set A(r) = 1 and B(θ) = 1 to obtain x1 = r and x2 = θ.
These results emphasize that, for given contravariant coordinates, the
associated covariant coordinates are not uniquely defined.

Exercise

3.3.1 Derive the expressions shown in (3.3.21).

3.4 Metric coefficients

The covariant components of the metric tensor, also called the covari-
ant metric coefficients, were defined in Section 3.1.5 in terms of the
covariant base vectors as

gij = gi · gj . (3.4.1)

Explicitly,

g11 = g1 · g1, g12 = g21 = g1 · g2, g22 = g2 · g2. (3.4.2)

It is useful to collect these coefficients into a symmetric matrix, as
shown in (3.1.9),

g ≡
[
g11 g12
g21 g22

]
. (3.4.3)

The contravariant components of the metric tensor, also called the
contravariant metric coefficients, are defined in a similar fashion in
terms of the contravariant base vectors as

gij = gi · gj. (3.4.4)

Explicitly,

g11 = g1 · g1, g12 = g21 = g1 · g2, g22 = g2 · g2. (3.4.5)
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It is useful to collect these coefficients into a symmetric matrix,

γ ≡
[
g11 g12

g21 g22

]
, (3.4.6)

so that γij = bij . In fact, we will show that the matrix of contravari-
ant metric coefficients is the inverse of that of the covariant metric
coefficients.

3.4.1 Orthogonality of metric coefficients matrices

Using the first of expressions (3.1.20) for g1, we find that

g11 ≡ g1 · g1 =
1

g2
(
g22 g1 − g12 g2

)
·
(
g22 g1 − g12 g2

)
. (3.4.7)

Carrying out the multiplications and simplifying, we find

g11 =
g22
g
. (3.4.8)

Working in a similar fashion with the first and second expressions in
(3.1.20), we find that

g11 =
g22
g
. g22 =

g11
g
, g12 = −g12

g
. (3.4.9)

These expressions reveal that the matrix g is the inverse of matrix γ,
and versa versa.

g = γ−1, γ = g−1, (3.4.10)

where the superscript −1 denotes the matrix inverse.

Referring to (3.1.20), we find that

g1 = g11 g1 + g12 g2, g2 = g12 g1 + g22 g2, (3.4.11)

which provide us with a formula for raising indices,

gi = gijgj . (3.4.12)
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In Section 3.1, we found a corresponding formula for lowering indices,
gi = gijg

j.

3.4.2 Confirmation by code

The following Matlab code, continuing the code nonortho listed in
Section 3.1, located in directory Nonortho of Tunlib, computes
the contravariant components of the metric tensor and confirms the
aforementioned orthogonality:

conmet(1,1) = gcon1(1)*gcon1(1) + gcon1(2)*gcon1(2);

conmet(1,2) = gcon1(1)*gcon2(1) + gcon1(2)*gcon2(2);

conmet(2,1) = conmetric(1,2);

conmet(2,2) = gcon2(1)*gcon2(1) + gcon2(2)*gcon2(2);

[inv(covmet) conmet]

Running the code generates the following output:

0.7795 -0.3564 0.7795 -0.3564

-0.3564 0.4716 -0.3564 0.4716

as instructed by the last line of the code. As expected, the first two
columns are the same as the last two columns.

3.4.3 Mixed components of the metric tensor

For completeness, we introduce the mixed components of the metric
tensor defined as

g◦ji ≡ gi · gj = gj · gi = g◦ij = δij , (3.4.13)

stemming from the biorthogonality condition; we recall that ◦ is a
blank space holder. The mixed components can be collected into two
matrices, [g◦ji ] and [g◦ij ], which are both equal to the identity tensor.

To conform with rules for raising and lowering indices, equations
(3.4.13) are typically written as

gi · gj = δ◦ji , gi · gj = δi◦j , (3.4.14)

where δ◦ji and δi◦j are disguised Kronecker deltas.
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3.4.4 The metric tensor is the identity tensor

The metric tensor may now be defined in the usual way in terms of its
contravariant, covariant, or mixed components,

G = gij gi ⊗ gj = gi◦j gi ⊗ gj = g◦ji gi ⊗ gj = gij g
i ⊗ gj,

(3.4.15)

where gij are contravariant components, gij are covariant components,
and summation is implied over the repeated indices, i and j. We find
that

G · gm = gij gi δjm = gi◦j g
jm = g◦ji gi δjm = gij g

i gjm = gm,

(3.4.16)

for any contravariant base vector, gm and also G · gm = gm, for any
covariant base vector, gm, which confirm that the metric tensor is the
identity tensor, G = I.

The following Matlab code, continuing the code nonortho listed
previously in this section, located in directory Nonortho of Tunlib,
confirms that the metric tensor is the identity tensor:

for m=1:2

for n=1:2

gmet1(m,n) = ...

conmet(1,1) * gcov1(m)*gcov1(n) ...

+conmet(1,2) * gcov1(m)*gcov2(n) ...

+conmet(2,1) * gcov2(m)*gcov1(n) ...

+conmet(2,2) * gcov2(m)*gcov2(n);

gmet2(m,n) = ...

covmet(1,1) * gcon1(m)*gcon1(n) ...

+covmet(1,2) * gcon1(m)*gcon2(n) ...

+covmet(2,1) * gcon2(m)*gcon1(n) ...

+covmet(2,2) * gcon2(m)*gcon2(n);

gmet3(m,n) = ...

gcon1(m)*gcov1(n) ...

+gcon2(m)*gcov2(n);
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end

end

[gmet1 gmet2 gmet3]

Running the code generates the following output:

1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

0.0000 1.0000 0.0000 1.0000 0.0000 1.0000

as instructed by the last line of the code. Each of the three pairs of
columns is the identity matrix.

3.4.5 Summary of notation and definitions

Notation and miscellaneous definitions are listed in Table 3.4.1 for ready
reference.

3.4.6 Traces

Because of the biorthonormality of the covariant and contravariant base
vectors, the trace of the tensors gi ⊗ gj and gj ⊗ gj satisfy

trace(gi ⊗ gj) = δij , trace(gi ⊗ gj) = δij , (3.4.17)

where δij is Kronecker’s delta. By definition, the traces of the matrices
gi ⊗ gj and gi ⊗ gj are

trace(gi ⊗ gj) = gi · gj = gij,

trace(gi ⊗ gj) = gi · gj = gij. (3.4.18)

The right-hand sides are the covariant or contravariant components of
the metric tensor (identity matrix.)

Exercise

3.4.1 Confirm that the orthogonality property (3.4.10) is consistent
with expressions (3.4.9).
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g1, g2 covariant base vectors
x1, x2 contravariant coordinates
g1, g2 contravariant base vectors
x1, x2 covariant coordinates

gij = gi · gj covariant metric tensor
components

e1 = g1/
√
g11, e2 = g2/

√
g22 covariant unit base vectors

g = [gij] covariant metric coefficients matrix

gij = gi · gj contravariant metric tensor
components

e1 = g1/
√
g11, e2 = g2/

√
g22 contravariant base unit vectors

γ = [gij] contravariant metric coefficients
matrix

Table 3.4.1 Definitions of covariant and contravariant coordinates,
base vectors, and vector components in two dimensions. Similar
definitions are made in three dimensions, as discussed in Chapter
4.

3.5 Areal and coordinate-line metrics

Consider a small shaded surface element in the xy plane defined by
two adjacent pairs of contravariant coordinate lines, as shown in Figure
3.5.1. For convenience, we set

a ≡ (g1)x, b ≡ (g1)y, c ≡ (g2)x, d ≡ (g2)y, (3.5.1)

where (gi)α is the α component of gi for i = 1, 2 and α = x, y. The
area of the shaded element is

dA = |g1dx
1 × g2dx

2| = J dx1 dx2, (3.5.2)

where J = ad− bc is the areal metric.
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Figure 3.5.1 Illustration of a differential element defined by two
pairs of contravariant coordinate lines, showing the arc lengths
of two edges and associated unit normal vectors.

The covariant matrix coefficients are given by g11 = a2 + b2, g12 =
ac+ bd, and g22 = c2+d2. We may confirm by direct substitution that

J =
√
g, (3.5.3)

where

g ≡ det(g) = g11g22 − g212 = (a2 + b2)(c2 + d2)− (ac+ bd)2. (3.5.4)

Carrying out the multiplications on the right-hand side, we find the
expression (ad− bc)2 = J 2.

3.5.1 Coordinate line metrics

The differential arc lengths dℓ1 and dℓ2 shown in Figure 3.5.1 are given
by

dℓ1 =
√
g11 dx

1, dℓ2 =
√
g22 dx

2. (3.5.5)

The associated unit normal vectors shown in Figure 3.5.1 are parallel
to the contravariant base vectors, given by

n1 =
1√
g11

g1, n2 =
1√
g22

g2. (3.5.6)
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Note that, in contrast to base vectors, the unit normal vectors are
dimensionless.

3.5.2 Coordinate flux of a vector field

Using the preceding expressions, we find that, if v is an arbitrary vector
field, then

v · n1 dℓ2 = v · g1

√
g22
g11

dx2. (3.5.7)

Now recalling that g11 = g22/g, as shown in (3.4.9), we obtain

v · n1 dℓ2 = v · g1 √g dx2. (3.5.8)

If v1 is the first contravariant component of v defined by

v = v1 g1 + v2 g2, (3.5.9)

then v · g1 = v1 and thus

v · n1 dℓ1 = v1
√
g22
g11

dx2, (3.5.10)

yielding

v · n1 dℓ2 = v1
√
g dx2. (3.5.11)

Note that the areal metric,
√
g, arises naturally in this expression.

Working in a similar fashion, we find that

v · n2 dℓ1 = v · g2

√
g11
g22

dx1, (3.5.12)

and then

v · n2 dℓ2 = v2
√
g dx1, (3.5.13)

which is the counterpart of (3.5.11).

Expressions (3.5.11) and (3.5.13) can be used to compute the inte-
gral of the normal component, v·n, around the four edges of the shaded
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area in Figure 3.5.1. Physically, the integral represents an integrated
convective flux associated with a velocity field, v.

3.5.3 Divergence of a vector field

Applying the divergence theorem for an arbitrary vector field, v, over
the shaded area shown in Figure 3.5.1, we write

∫∫
∇ · v dA =

∮
n · v dℓ, (3.5.14)

where the line integral on the right-hand side is computed along the
four edges of the shaded area.

∫∫
∇ · vJ dx1 dx2 =

∫

A,B,C,D

n · v dℓ, (3.5.15)

where A,B,C,D denote the left, right, top, and bottom edge of the
shaded area.

Approximating the line integrals along the edges for a small shaded
shell with the expressions provided in (3.5.11) and (3.5.13), we obtain

(∇ · v)J dx1 dx2 = (v1
√
g)x1+dx1 dx2 − (v1

√
g)x1 dx2

+(v2
√
g)x2+dx2 dx1 − (v2

√
g)x2 dx1, (3.5.16)

where the divergence ∇ · v on the left-hand side is evaluated at a
designated center of the shaded area. Now setting J =

√
g, dividing

both sides by the product dx1 dx2, and taking the limit as dx1 and dx2

tend to zero, we obtain an expression for the divergence of a vector
field,

∇ · v =
1√
g

( ∂

∂x1
(
v1

√
g
)
+

∂

∂x2
(
v2

√
g
) )
. (3.5.17)

In compact notation,

∇ · v =
1√
g

∂

∂xi
(
vi
√
g
)
, (3.5.18)

where summation is implied over the repeated index, i. The deriva-
tives on the right-hand side can be discretized by standard numerical
methods on a curvilinear grid.
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3.5.4 Finite-volume method

As an application, we consider the continuity equation for a general
compressible or incompressible fluid,

∂ρ

∂t
+∇ · (ρu) = 0, (3.5.19)

where ρ is the fluid density, u is the fluid velocity, and t stands for time.

Integrating this equation over the shaded area shown in Figure 3.5.1,
and applying the divergence theorem stated in (3.5.14) for v = ρu, we
obtain

∫∫
∂ρ

∂t
dA +

∮
ρn · u dℓ = 0, (3.5.20)

where the line integral is computed along the four edges of the shaded
area. Using the formulas derived previously in this section, we obtain

∮
ρn · u dℓ =

∫

A

ρ u1
√
g dx2 −

∫

B

ρ u1
√
g dx2

+

∫

C

ρ u2
√
g dx1 −

∫

D

ρ u2
√
g dx1, (3.5.21)

where A,B,C,D denote the left, right, top, and bottom edge of the
shaded area.

In a finite-volume formulation, edge distributions are replaced by
a representative constant value defined either in terms of neighboring
shaded areas (cells or finite volumes) or in terms of neighboring nodes.
Approximating the areal integral in (3.5.20) over a cell with the expres-
sion

∫∫
∂ρ

∂t
dA ≃

( ∂ρ
∂t

√
g
)
cell

∆x1 ∆x2, (3.5.22)

we obtain

(∂ρ
∂t

√
g
)
cell

∆x1 ∆x2 +
(
(ρ u1

√
g)A − (ρ u1

√
g)B

)
∆x2

+
(
(ρ u2

√
g)C − (ρ u2

√
g)D

)
∆x1 = 0. (3.5.23)
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However, since curvilinear coordinates provide us with a structured grid
that can be used to implement finite-difference discretizations, a com-
pelling argument for using the finite-volume method in curvilinear co-
ordinates is hard to make.

3.5.5 Laplacian of a scalar field

The Laplacian of a scalar field, f , is a scalar field defined as the diver-
gence of the gradient of the field,

∇2f ≡ ∇ · (∇f). (3.5.24)

Applying (3.5.18) for v = ∇f , we obtain

∇ · v =
1√
g

∂

∂xi
(√

g (∇f)i
)
, (3.5.25)

where (∇f)i is the ith contravariant component of the gradient. In
Section 5.1, we will show that

(∇f)i =
∂f

∂xi
= gki

∂f

∂xk
, (3.5.26)

as shown in (5.1.8), where summation is implied over the repeated
index, k. Consequently, the Laplacian is given by

∇2f =
1√
g

∂

∂xi

(√
g gki

∂f

∂xk

)
, (3.5.27)

where summation is implied over the repeated indices, i and k. Note
that the contravariant metric coefficients are involved in this expression.

Expanding the derivatives on the right-hand side of (3.5.27) and
rearranging, we obtain

∇2f = gki
∂2f

∂xi∂xk
+ vk

∂f

∂xk
, (3.5.28)

where

vk ≡ 1√
g

∂

∂xi

(
gki

√
g
)

(3.5.29)
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and summation is implied over the repeated index, k. The first and
second derivatives on the right-hand side of (3.5.28) can be discretized
by standard numerical methods. Explicitly, the Laplacian is given by

∇2f = gξξ
∂2f

∂ξ2
+ 2 gξη

∂2f

∂ξ∂η
+ gηη

∂2f

∂η2
+ vξ

∂f

∂ξ
+ vη

∂f

∂η
, (3.5.30)

where ξ stands for x1 and η stands for x2. First and second derivatives
are involved in this expression.

Exercise

3.5.1 Confirm that the Laplacian given in (3.5.27) provides us with the
sum of the second derivatives in Cartesian coordinates.

3.6 Oblique rectilinear coordinates

The simplest non-Cartesian coordinates are oblique rectilinear coordi-
nates in the xy plane defined by inclined rectilinear coordinate lines, as
shown in Figure 3.6.1. The covariant base consist of two dimensionless
constant vectors,

g1 =

[
1
α

]
, g2 =

[
β
1

]
, (3.6.1)

where α ad β are arbitrary positive or negative dimensionless constants
and the square brackets enclose the x and y Cartesian coordinates.
Oblique rectilinear coordinates are sometimes called nonorthogonal ho-

mogeneous coordinates.

The parameters α and β are related to the angles ψ and φ shown
in Figure 3.6.1 by

α = tanψ, β = tanφ. (3.6.2)

When α + β = 0, and correspondingly φ = −ψ, we obtain rotated
Cartesian coordinates.
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90

90

φ

ψ

Figure 3.6.1 Illustration of two-dimensional oblique rectilinear co-
ordinates, x1 and x2 corresponding to the covariant base vectors
g1 and g2.

3.6.1 Relation between coordinates

Integrating equation

dx = g1 dx
1 + g2 dx

2, (3.6.3)

we find that

x = x1 + βx2, y = αx1 + x2. (3.6.4)

Conversely, using Cramer’s rule to solve these equations for x1 and x2,
we find that

x1 =
1

1− αβ
(x− βy), x2 =

1

1− αβ
(y − αx). (3.6.5)

Note that x2 = 0 when y = αx and x1 = 0 when x = βy.

3.6.2 Covariant metric coefficients

The covariant components of the metric tensor can be arranged in the
following matrix:

g =

[
1 + α2 α + β
α + β 1 + β2

]
, (3.6.6)
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The determinant of this matrix is

g = det(g) = (1− αβ)2. (3.6.7)

The areal metric is

J =
√
g = |1− αβ|, (3.6.8)

where the vertical bar denote the absolute value. A singularity arises
only when αβ = 1, whereupon g1 = g2.

3.6.3 Contravariant base vectors

Referring to formulas (3.1.20), we find that the contravariant base
vectors are given by

g1 =
1

(1− αβ)2
(
(1 + β2) g1 − (α+ β) g2

)
(3.6.9)

and

g2 =
1

(1− αβ)2
(
− (α+ β) g1 + (1 + α2) g2

)
. (3.6.10)

Making substitutions, we find that

g1 =
1

1− αβ

[
1

−β

]
, g2 =

1

1− αβ

[
−α
1

]
. (3.6.11)

A singularity arises only when αβ = 1, whereupon g1 = g2. These
expressions confirm that g1 = ∇x1 and g2 = ∇x2, where the function
v(x1, x2) is described in (3.6.5).

3.6.4 Contravariant metric coefficients

The contravariant components of the metric tensor can be arranged in
the following matrix:

γ =
1

(1− αβ)2

[
1 + β2 −α− β

−α− β 1 + α2

]
. (3.6.12)

It can be confirmed by direct substitution that the matrix γ is the
inverse of the matrix g shown in (3.6.6), and vice versa.
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3.6.5 Laplacian of a scalar field

Referring to formula (3.5.30), we find that the Laplacian of a scalar
field, f(x), is given by the formula

∇2f =
1

(1− αβ)2
(
(1 + β2)

∂2f

∂x1∂x1

−2 (α + β)
∂2f

∂x1∂x2
+ (1 + α2)

∂2f

∂x2∂x2
)
. (3.6.13)

The presence of a mixed second derivatives is a feature of non-orthogonal
coordinates.

3.6.6 Laplace’s equation

Consider Laplace’s equation,

∇2f = 0, (3.6.14)

subject to specified boundary conditions. Invoking the expression for
the Laplacian given in (3.6.13), we obtain

(1 + β2)
∂2f

∂x1∂x1
− 2 (α+ β)

∂2f

∂x1∂x2
+ (1 + α2)

∂2f

∂x2∂x2
= 0.

(3.6.15)

Two simple solutions are f = cx1 and f = cx2, where c is a constant.
The quadratic function f = cx1x2 is not a solution.

3.6.7 Separation of variables

We may attempt to solve Laplace’s equation by separation of variables
in x1 and x2, setting

f(x1, x2) = Φ(x1) Ψ(x2). (3.6.16)

Making substitutions, we find that

(1 + β2)
Φ′′

Φ
− 2 (α + β)

Φ′Ψ′

ΦΨ
+ (1 + α2)

Ψ′′

Ψ
= 0. (3.6.17)

The first term on the left-hand side is a function of x1, the last term is
a function of x2, and the second term is a function of x1 and x2. We
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conclude that Laplace’s equation is non-separable in oblique rectilinear
coordinates.

3.6.8 Small obliqueness

We may define

ε ≡ 1

2
(α + β), γ ≡ 1

2
(β − α), (3.6.18)

and write

α = ε− γ, β = ε+ γ. (3.6.19)

Laplace’s equation becomes

(1 + γ2 + 2 ε γ + ε2)
∂2f

∂x1∂x1
− 4ε

∂2f

∂x1∂x2

+(1 + γ2 − 2 ε γ + ε2)
∂2f

∂x2∂x2
= 0. (3.6.20)

Rearranging, we obtain

∇̂2f = ε
2

1 + γ2 + ε2
(
− γ

∂2f

∂x1∂x1
+ 2

∂2f

∂x1∂x2
+ γ

∂2f

∂x2∂x2
)
,

(3.6.21)

where

∇̂2 ≡ ∂2f

∂x1∂x1
+

∂2f

∂x2∂x2
(3.6.22)

is the Laplacian in the curvilinear coordinate plane. We recall that,
when ε = 0, we obtain rotated orthogonal coordinates.

3.6.9 Perturbation expansion

A perturbation expansion can be written for small ǫ, setting f = f0 +
ǫ f1 + · · · . Substituting this expansion into (3.6.21), we obtain

∇̂2f0 = 0 (3.6.23)

and

∇̂2f1 =
2

1 + γ2
(
− γ

∂2f0
∂x1∂x1

+ 2
∂2f0
∂x1∂x2

+ γ
∂2f0
∂x2∂x2

)
. (3.6.24)
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Similar equations can be derived for higher-order corrections.

3.6.10 Example

As an example, we consider the solution for boundary conditions com-
puted from f = ξx1x2 for x1 = ±a and x2 = ±b, where ξ, a, and b
are three constants. The solution of (3.6.23) subject to these boundary
conditions is found readily by inspection, and is given by

f0 = ξx1x2. (3.6.25)

Equation (3.6.24) becomes

∂2f1
∂x1∂x1

+
∂2f1
∂x2∂x2

=
4ξ

1 + γ2
, (3.6.26)

which is a Poisson equation with a constant forcing term on the right-
hand side. The boundary conditions are f1 = 0 at x1 = ±a and
x2 = ±b.

The solution can be found by Fourier expansions, and is given by

f1(ξ, η) =
2ξ

1 + γ2
b2Ψ(ξ, η), (3.6.27)

where ξ = x1, η = x2,

Ψ(ξ, η) = 1− η2

b2
+ 4

∞∑

n=1

(−1)n
1

α3
n

cosh(αn ξ/b)

cosh(αn a/b)
cos(αn

η

b
),

(3.6.28)

and αn = (n− 1
2
) π.

Exercises

3.6.1 Confirm that [gij] is the inverse of [gij].

3.6.2 Write an equation for the second-order solution f2 in the asymp-
totic expansion for ε for Laplace’s equation.
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3.7 Canonical oblique rectilinear coordinates

In the canonical state of oblique coordinates, α = 0, the parameter
β is arbitrary, and ε = 1

2
β, as shown in Figure 3.7.1. The Cartesian

coordinates are related to the canonical oblique coordinates by

x = x1 + βx2, y = x2. (3.7.1)

We recall that β = tanφ, where the angle φ is defined in Figure 3.7.1.
Note that the x2 and y coordinates are the same. The inverse relations
are

x1 = x− βy, x2 = y. (3.7.2)

The covariant base vectors are given by

g1 =

[
1
0

]
, g2 =

[
β
1

]
(3.7.3)

and the contravariant base vectors are given by

g1 =

[
1

−β

]
, g2 =

[
0
1

]
, (3.7.4)

as shown in Figure 3.7.1.

3.7.1 Laplacian

The Laplacian of a function, f(x1, x2), given in (3.6.13), simplifies to

∇2f = (1 + β2)
∂2f

∂x1∂x1
− 2 β

∂2f

∂x1∂x2
+

∂2f

∂x2∂x2
, (3.7.5)

which can be written as

∇2f =
∂2f

∂x1∂x1
+
( ∂

∂x2
− β

∂

∂x1

)2

f, (3.7.6)

with the understanding that the square of the operator inside the paren-
theses expands as an operator.
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Figure 3.7.1 Illustration of two-dimensional oblique rectilinear co-
ordinates in the canonical form.

3.7.2 Scaled coordinates

We may scale the second contravariant coordinate, x2, and refer to the
scaled coordinates, x̃1 and x̃2, defined by

x1 = x− βy = x̃1, x2 = y =
1√

1 + β2
x̃2. (3.7.7)

Inverting these equations, we obtain

x = x1 +
β√

1 + β2
x̃2, y =

1√
1 + β2

x̃2. (3.7.8)

The expression for the Laplacian becomes

∇2f = (1 + β2)
( ∂2f

∂x̃1∂x̃1
− 2

β√
1 + β2

∂2f

∂x̃1∂x̃2
+

∂2f

∂x̃2∂x̃2

)
.

(3.7.9)

Setting β = tanφ, we obtain

∇2f =
1

cos2 φ

( ∂2f

∂x̃1∂x̃1
− 2 sinφ

∂2f

∂x̃1∂x̃2
+

∂2f

∂x̃2∂x̃2

)
, (3.7.10)

where the angle φ is defined in Figure 3.7.1.
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3.7.3 Small deviations from Cartesian coordinates

Consider Poisson’s equation,

∇2f + s = 0, (3.7.11)

with reference to the Laplacian given in (3.7.5), where s is a specified
source term. Now introducing a perturbation expansion for small β,

f = f0 + β f1 + · · · , (3.7.12)

we obtain the leading-order equation

∂2f0
∂x1∂x1

+
∂2f0
∂x2∂x2

+ s = 0, (3.7.13)

and the first-order equation

∂2f1
∂x1∂x1

+
∂2f1
∂x2∂x2

= 2
∂2f0
∂x1∂x2

. (3.7.14)

These two Poisson equations provide us with the first two leading-order
solutions to be found subject to suitable boundary conditions.

3.7.4 Flow through an oblique rectangular pipe

As an example, we consider unidirectional viscous flow through a pipe
whose cross-sectional shape is a parallelogram with four sides located
at x1 = ±a and x2 = ±b. The solution for the velocity satisfies the
Poisson equation with a constant source term, s, subject to the no-slip
boundary condition around the four edges, f = 0.

For convenience, we set x1 = ξ and x2 = η. The zeroth-order
solution is found readily as a Fourier series, as discussed in Section 5.1,

f0(ξ, η) =
1

2
s b2Ψ(ξ, η), (3.7.15)

where

Ψ(ξ, η) = 1− η2

b2
+ 4

∞∑

n=1

(−1)n
1

α3
n

cosh(αn ξ/b)

cosh(αn a/b)
cos(αn

η

b
)

(3.7.16)
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and αn = (n− 1
2
) π. We find that

∂2f0
∂ξ∂η

= −2
s

b2

∞∑

n=1

(−1)n
1

αn

sinh(αn ξ/b)

cosh(αn a/b)
sin(αn

η

b
), (3.7.17)

which satisfies Laplace’s equation in ξ and η. Substituting this expres-
sion into the right-hand side of (3.7.14) provides us with a Poisson
equation for the first-order solution, f1. The Poisson equation can be
found by Fourier expansions or other numerical methods.

3.7.5 Finite-difference method

In canonical oblique coordinates, the Poisson equation,

∇2f + s = 0, (3.7.18)

takes the form

(1 + β2)
∂2f

∂ξ2
− 2 β

∂2f

∂ξ∂η
+
∂2f

∂η2
+ s = 0, (3.7.19)

where s is a specified source term.

The solution can be found using a standard finite-difference method
on a uniform grid with grid spacings ∆ξ and ∆η based on the finite-
difference approximations

∂2f

∂ξ2
≃ fi−1,j − 2fi,j + fi+1,j

∆ξ2
,

∂2f

∂η2
≃ fi,j−1 − 2fi,j + fi,j+1

∆η2
(3.7.20)

for the pure second derivatives, and

∂2f

∂ξ∂η
≃ 1

4∆ξ∆η
(fi+1,j+1 − fi−1,j+1 − fi+1,j−1 + fi−1,j−1)

(3.7.21)

for the mixed second derivative.
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The discretized Poisson equation (3.7.19) at the ij finite-difference
node of a uniform Cartesian grid in the ξη plane takes the form

(1 + β2) (fi−1,j − 2fi,j + fi+1,j) (3.7.22)

−1

2
β ̺ (fi+1,j+1 − fi−1,j+1 − fi+1,j−1 + fi−1,j−1)

+̺2 (fi,j−1 − 2fi,j + fi,j+1) + ∆ξ2s = 0,

where subscripts indicate grid values and

̺ =
∆ξ

∆η
(3.7.23)

is the ratio of the grid spacings.

Collecting all the unknown grid values and implementing the bound-
ary conditions provides us with a system of linear equations,

A · f = b. (3.7.24)

where A is a constructed coefficient matrix, b is a known right-hand
side incorporating the boundary conditions, and the unknown grid val-
ues are collected into a long vector f .

3.7.6 Construction of a linear system

A programmable algorithm can be designed for generating the coef-
ficient matrix, A, and right-hand side, b, thereby circumventing the
daunting task of manual bookkeeping. The main idea is to recast the
system A · f = b into the form

r ≡ A · f − b, (3.7.25)

where r is a residual vector, and then note that the matrix A contains
the partial derivatives of the scalar components of the residual vector,
r, with respect to the components fℓ,

Ak,ℓ =
∂rk
∂fℓ

= rk(fm = δm,ℓ)− rk(f = 0), (3.7.26)

where δm,ℓ is Kronecker’s delta and the index m runs through the so-
lution vector. To compute A and b, we only require a subroutine or
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computer function that receives the components of the vector f and
generates the vector r. The method of impulses involves scanning se-
quentially all nodes while setting f = 1 at the current node and f = 0
at all other nodes,

The following Matlab function named pois fds DDDD, located in
directory Oblique of Tunlib, computes the coefficient matrix, A,
and right-hand side, b, when the solution domain is a rectangle in the
ξη plane and the Dirichlet boundary condition is specified around the
four sides of the solution domain:

function [mats,mat,rhs] = pois_fds_DDDD ...

...

(ax,bx ...

,ay,by ...

,beta ...

,Nx,Ny ...

,source ...

,w,q,z,v ...

)

%==============================================

% Generate a finite-difference linear system

% for the Poisson equation in oblique coordinates, (x, y),

% inside a rectangle confined by ax<x<bx, ay<y<by

% where x = xi and y = eta

%

% Equation is: Lalp(f) + source = 0

% System is : mat * x = rhs

%

% Boundary conditions: f = w at x = ax

% f = q at x = bx

% f = z at y = ay

% f = v at y = by

%

% The system is generated by the method of impulses

% which involves setting f=1 to one grid nodes

% while all other grid values are held at f=0

%

% SYMBOLS:
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% -------

%

% Nx... intervals in x direction

% Ny... intervals in y direction

% mats... system size

% mat.. finite-difference matrix

% rhs.. right-hand side

%

% unknown vector is comprised of sequential values (i,j):

% (horizontal and then up)

%

% 2,2 3,2 4,2 ... Nx-1,2 Nx,2

% 2,3 3,3 4,3 ... Nx-1,3 Nx,2

% ...

%

% 2,Ny 3,Ny 4,Ny ... Nx-1,Ny Nx,Ny

%=====================================

%--------

% prepare

%--------

Dx = (bx-ax)/Nx; Dy = (by-ay)/Ny;

Dx2 = 2.0*Dx; Dy2 = 2.0*Dy;

Dxs = Dx^2; Dys = Dy^2;

vp = Dx/Dy; vps = vp*vp;

cf1 = 1.0+beta^2;

cf2 =-0.5*beta*vp;

%-------------------

% initialize to zero

%-------------------

for j=2:Ny

for i=2:Nx

f(i,j) = 0.0;
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end

end

%------------------------------

% Dirichlet boundary conditions

%------------------------------

for j=2:Ny

f( 1,j) = w(j); % left side

f(Nx+1,j) = q(j); % right side

end

for i=2:Nx+1

f(i, 1) = z(i); % down

f(i,Ny+1) = v(i); % up

end

%---

% right-hand side

%---

p = 0; % counter

for j=2:Ny

for i=2:Nx

p = p+1;

R = cf1*f(i+1,j) ...

- 2.0*(cf1+vps)*f(i,j)...

+ cf1*f(i-1,j)...

+ vps*f(i,j-1)...

+ vps*f(i,j+1)...

+ cf2*f(i+1,j+1) ...

- cf2*f(i-1,j+1) ...

- cf2*f(i+1,j-1) ...

+ cf2*f(i-1,j-1) ...

+ Dxs*source(i,j);

rhs(p) = - R;

end

end
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mats = p; % system size

%-------------------------------

% scan row-by-row to compute mat

%-------------------------------

t = 0; % counter

for s=2:Ny

for l=2:Nx

t = t+1;

f(l,s) = 1.0; % impulse

p = 0; % counter

for j=2:Ny

for i=2:Nx

p = p+1;

R = cf1*f(i+1,j) ...

-2.0* (cf1+vps)*f(i,j)...

+ cf1*f(i-1,j)...

+ vps*f(i,j-1)...

+ vps*f(i,j+1)...

+ cf2*f(i+1,j+1) ...

- cf2*f(i-1,j+1) ...

- cf2*f(i+1,j-1) ...

+ cf2*f(i-1,j-1) ...

+ Dxs*source(i,j);

mat(p,t) = R+rhs(p);

end

end

f(l,s) = 0.0; % reset

end

end
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%-----

% done

%-----

return

3.7.7 Finite-difference code

The followingMatlab code named oblique, located in directoryOblique

of Tunlib, calls the function pois fds DDDD, solves the linear system,
and displays the solution:

phi = 0.25*pi;

ax =-1.0; bx = 1.0;

ay =-1.0; by = 1.0;

Nx = 16; Ny = 16;

beta = tan(phi);

%--------------------

% boundary conditions

% and source term

%--------------------

for j=1:Ny+1

w(j) = 0.0; % example

q(j) = 0.0; % example

end

for i=1:Nx+1

z(i) = 0.0; % example

v(i) = 0.0; % example

end

for i=1:Nx+1

for j=1:Ny+1

source(i,j) = 10.0; % example

end



DR
AF
T

3.7 Canonical oblique rectilinear coordinates 183

end

%---------------------------

% generate the linear system

%---------------------------

[mats,mat,rhs] = pois_fds_DDDD ...

...

(ax,bx ...

,ay,by ...

,beta ...

,Nx,Ny ...

,source ...

,w,q,z,v ...

);

%---

% solution

%---

sol = rhs/mat';

%---

% distribute the solution

%---

p = 0; % counter

for j=2:Ny

for i=2:Nx

p = p+1;

f(i,j) = sol(p);

end

end

for j=1:Ny+1

f( 1,j) = w(j);

f(Nx+1,j) = q(j);

end
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for i=1:Nx+1

f(i, 1) = z(i);

f(i,Ny+1) = v(i);

end

%---

% physical grid

%---

Dx = (bx-ax)/Nx; Dy = (by-ay)/Ny;

for j=1:Ny+1

for i=1:Nx+1

xincl = ax + (i-1.0)*Dx;

yincl = ay + (j-1.0)*Dy;

xphys(i,j) = xincl + beta*yincl;

yphys(i,j) = yincl;

end

end

%---

% plot

%---

surf(xphys,yphys,f)

Running the code generates the graphics shown in Figure 3.7.1. Phys-
ically, the graph shown in this picture is the velocity profile established
inside a tube with oblique cross-section in unidirectional viscous flow
or the shape of deformed membrane attached to an oblique tube.

Exercises

3.7.1 Derive expression (3.7.10).

3.7.2 Write a piece of code, continuing the code listed in the text, that
computes the flow rate in viscous unidirectional flow through a tube
whose cross-section is a parallelogram.
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Figure 3.7.1 Solution of the Poisson equation with a uniform source
term inside an inclined parallelogram computed with a finite-
different method.

3.8 Channel coordinates

For convenience, we denote the contravariant coordinates as ξ = x1

and η = x2. The coordinate grid lines displayed in Figure 3.8.1(a, b)
were generated using the mapping functions

x = Lξ, (3.8.1)

y = h
(
(η − 1

2
) (1 + w−) + (η +

1

2
) (1 + w+)

)
,

where L and h are arbitrary constants representing the channel length
and semi-width,

w−(ξ) = a− cos(2πξ), w+(ξ) = a+ cos(2πξ) (3.8.2)

are the lower and upper wall profiles, and a− and a+ are the correspond-
ing dimensionless amplitudes. Other more complicated upper and lower
wall profiles can be chosen.

For the test section displayed in Figure 3.8.1 confined inside one
period, the curvilinear coordinates ξ and η each takes values in the
range [−0.5, 0.5]. The plots displayed in this figure, as well as all other
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Figure 3.8.1 (a) Cartesian lines in a parametric square and (b) cor-
responding coordinate lines in a channel confined between two
wavy walls for channel semi-width h/L = 1 and lower and upper
wall amplitudes a−/L = 0.1 and a+/L = 0.2.

plots displayed in this section, were generated using a code named
poisson located in directory Channel of Tunlib.

3.8.1 Base vectors and metric coefficients

We find by straightforward differentiation that the covariant base vec-
tors are given by

gξ ≡
∂x

∂ξ
=

[
L

h
(
(η − 1

2 )w
′
− + (η + 1

2 )w
′
+

)
]

(3.8.3)

and

gη ≡
∂x

∂η
=

[
0

h
(
(1 + w−) + (1 + w+)

)
]
, (3.8.4)

where a prime denotes a derivative with respect to ξ. These two covari-
ant vectors are mutually perpendicular only at the planes of symmetry
positioned at x/L = −0.5, 0, 0.5, as shown in Figure 3.8.2(a). The
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Figure 3.8.2 (a) Covariant and (b) contravariant base vector fields
in a channel-like domain.

associated contravariant base vectors are shown in Figure 3.8.2(b).
Cursory inspection confirms the biorthogonality of the covariant and
contravariant sets of base vectors at every grid node.

The covariant metric coefficients are given by

gξξ = L2 + h2
(
(η − 1

2
)w′

− + (η +
1

2
)w′

+

)2
,

gηη =
(
(1 + w−) + (1 + w+)

)2
, (3.8.5)

gξη = gηξ = h2
(
(η − 1

2
)w′

− + (η +
1

2
)w′

+

) (
(1 + w−) + (1 + w+)

)
.

The determinant g = det(g) depends on ξ but not on η, as shown in
Figure 3.8.3(a).

3.8.2 Laplacian

The Laplacian of a function, f(x, y) was given in equation (3.5.30),
repeated below for convenience,

∇2f = gξξ
∂2f

∂ξ2
+ 2gξη

∂2f

∂ξ∂η
+ gηη

∂2f

∂η2
+ vξ

∂f

∂ξ
+ vη

∂f

∂η
, (3.8.6)
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Figure 3.8.3 Distribution of (a) the determinant of the matrix of
covariant metric coefficients, g, and (b-d) contravariant metric
coefficients, gξξ, gξη, and gηη, for channel coordinates. (e, f)
Distribution of the coefficients vξ and vη defined in (3.8.7).
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where

vk ≡ 1√
g

∂

∂xi

(
gki

√
g
)
. (3.8.7)

The distributions of the contravariant metric coefficients, gξξ, gξη, and
gηη, are shown in Figure 3.8.3(b–d). Note that the distribution of gξξ

shown in Figure 3.8.3(b) is flat. The distributions of the coefficients vη

and vη are plotted in Figure 3.8.3(e, f).

3.8.3 Poisson equation

Now we consider the Poisson equation in the xy plane,

∇2f + s = 0, (3.8.8)

where s is a specified source distribution. Substituting the expression
for the Laplacian, we obtain

gξξ
∂2f

∂ξ2
+ 2gξη

∂2f

∂ξ∂η
+ gηη

∂2f

∂η2
+ vξ

∂f

∂ξ
+ vη

∂f

∂η
+ s(ξ, η) = 0.

(3.8.9)

The solution can be found using a standard finite-difference method on
a uniform grid with grid spacings ∆ξ and ∆η based on second-order
finite-difference approximations at the i, j node. The approximations
are

∂f

∂ξ
≃ 1

2∆ξ
(fi+1,j + fi−1,j),

∂f

∂η
≃ 1

2∆η
(fi,j+1 + fi,j−1) (3.8.10)

for the first derivatives,

∂2f

∂ξ2
≃ 1

∆ξ2
(fi−1,j − 2fi,j + fi+1,j),

∂2f

∂η2
≃ 1

∆η2
(fi,j−1 − 2fi,j + fi,j+1) (3.8.11)
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for the pure second derivatives, and

∂2f

∂ξ∂η
≃ 1

4∆ξ∆η
(fi+1,j+1 − fi−1,j+1 − fi+1,j−1 + fi−1,j−1)

(3.8.12)

for the mixed second derivative at the i, j node, where the indices i
and j are grid-node labels. Note that the central value, fi,j , appears
only in the pure second derivatives.

The discretized Poisson equation (3.8.6) at the ij finite-difference
node of a uniform Cartesian grid takes the form

gξξ (fi−1,j − 2fi,j + fi+1,j) (3.8.13)

+
1

2
gξηµ (fi+1,j+1 − fi−1,j+1 − fi+1,j−1 + fi−1,j−1)

+
1

2
∆ξ

(
vξ(fi+1,j − fi−1,j) + µvη(fi,j+1 − fi,j−1)

)

+µ2 gηη (fi,j−1 − 2fi,j + fi,j+1) + ∆ξ2 s = 0,

where

µ =
∆ξ

∆η
(3.8.14)

is the ratio of the grid spacings and subscripts indicate grid values.

3.8.4 Linear equations

Collecting all unknown grid values into a long vector, f , provides us
with the system of linear equations,

A · f = b. (3.8.15)

where A is a coefficient matrix and b is a known right-hand side incor-
porating the boundary conditions. The formulation is similar to that
discussed in Section 3.6 for solving the Poisson equation in oblique
rectilinear coordinates.
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3.8.5 Construction of the coefficient matrix

for PPDD boundary conditions

The matrix, A, and right-hand side, b, can be constructed by the
method of impulses, which involves scanning sequentially all nodes while
setting f = 1 at the current node and f = 0 at all other nodes, as
discussed in Section 3.6.

AMatlab function named pois fds PPDD, located in directory Chan-

nel of Tunlib, computes the coefficient matrix, A, and right-hand
side, b. The periodicity condition (PP) is imposed along the ξ axis
and the Dirichlet boundary condition (DD) is imposed around the top
and bottom sides of the solution domain. The input to this function
includes three contravariant metric coefficients and the nodal values of
vξ and vη:

function [mats,mat,rhs] = pois_fds_PPDD ...

...

(ax,bx ...

,ay,by ...

,Nx,Ny ...

,g11,g12,g22 ...

,v1,v2 ...

,source ...

,z,v ...

)

%==============================================

% Generate a finite-difference linear system

% for the Poisson equation

% inside a rectangle confined in

% ax<x<bx, ay<y<by

%

% Equation is: Lalp(f) + source = 0

%

% System is : mat * x = rhs

%

% Boundary conditions: f = periodic at x = ax

% f = periodic at x = bx

% f = z at y = ay
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% f = v at y = by

%

% The system is generated by the method of impulses

%

% SYMBOLS:

% -------

%

% Nx... intervals in x direction

% Ny... intervals in y direction

% mats... system size

% mat.. finite-difference matrix

% rhs.. right-hand side

%

% unknown vector is comprised of sequential values (i,j):

% (horizontal and then up)

%

% 2,2 3,2 4,2 ... Nx,2 Nx+1,2

% 2,3 3,3 4,3 ... Nx,3 Nx+1,2

% ...

%

% 2,Ny 3,Ny 4,Ny ... Nx,Ny Nx+1,Ny

%=====================================

%-------------

% preparations

%-------------

Dx = (bx-ax)/Nx;

Dy = (by-ay)/Ny;

%------------------

% more preparations

%------------------

Dx2 = 2.0*Dx;

Dy2 = 2.0*Dy;

Dxs = Dx^2;

Dys = Dy^2;
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vp = Dx/Dy;

vps = vp*vp;

%-------------------

% initialize to zero

%-------------------

for j=1:Ny+1

for i=1:Nx+2

f(i,j) = 0.0;

end

end

%------------------------------

% Dirichlet boundary conditions

% at bottom and top

%------------------------------

for i=1:Nx+2

f(i, 1) = z(i); % bottom

f(i,Ny+1) = v(i); % top

end

%---

% wrap

%---

for j=1:Ny+1

f(1,j) = f(Nx+1,j); f(Nx+2,j) = f(2,j);

end

%---

% right-hand side

%---

p = 0; % counter

for j=2:Ny

for i=2:Nx+1
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p = p+1;

R = g11(i,j)*(f(i-1,j)-2.0*f(i,j)+f(i+1,j)) ...

+ vps*g22(i,j)*(f(i,j-1)-2.0*f(i,j)+f(i,j+1)) ...

+ 0.5*vp*g12(i,j)*(f(i+1,j+1)-f(i-1,j+1) ...

-f(i+1,j-1)+f(i-1,j-1)) ...

+ 0.5*Dx* v1(i,j)*(f(i+1,j)-f(i-1,j)) ...

+ 0.5*Dx*vp*v2(i,j)*(f(i,j+1)-f(i,j-1)) ...

+ Dxs*source(i,j);

rhs(p) = - R;

end

end

mats = p; % system size

%-------------------------------

% scan row-by-row to compute mat

%-------------------------------

t = 0; % counter

for s=2:Ny

for l=2:Nx+1

t = t+1;

f(l,s) = 1.0; % impulse

for j=2:Ny % wrap

f(1,j) = f(Nx+1,j);

f(Nx+2,j) = f(2,j);

end

p = 0; % counter

for j=2:Ny

for i=2:Nx+1

p = p+1;

R = g11(i,j)*(f(i-1,j)-2.0*f(i,j)+f(i+1,j)) ...

+ vps*g22(i,j)*(f(i,j-1)-2.0*f(i,j)+f(i,j+1)) ...

+ 0.5*vp*g12(i,j)*(f(i+1,j+1)-f(i-1,j+1) ...
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-f(i+1,j-1)+f(i-1,j-1)) ...

+ 0.5*Dx* v1(i,j)*(f(i+1,j)-f(i-1,j)) ...

+ 0.5*Dx*vp*v2(i,j)*(f(i,j+1)-f(i,j-1)) ...

+ Dxs*source(i,j);

mat(p,t) = R+rhs(p);

end

end

f(l,s) = 0.0; % reset

for j=2:Ny % wrap

f(1,j) = f(Nx+1,j);

f(Nx+2,j) = f(2,j);

end

end

end

%-----

% done

%-----

return

3.8.6 Finite-difference code

The following Matlab code named channel, located in directory Chan-

nel of Tunlib, calls the preceding function, solves the linear system
of equations for the nodal values, and visualizes the solution.

%============================

% Solution of the Poisson equation

% with Dirichlet boundary conditions

% in curvilinear coordinates

% in a channel-like domain

%

% xi = x^1, eta =x^2

%

% xi varies in [ax, bx]

% eta varies in [ay, by]
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%============================

%---

% channel geometrical parameters

%---

ichannel = 2; % annulus

ichannel = 1; % channel

L = 1.3; h = 0.45;

%---

% amplitude and phase

%---

ahig = 0.2; alow = 0.1;

phasehig = 0.25*pi;

phasehig = 0.0*pi;

%---

% parameters

%---

N1 = 1*16;

N2 = 1*16;

if(ichannel==2)

N1 = 2*16;

N2 = 1*16;

end

a1 = -0.5; b1 = 0.5;

a2 = -0.5; b2 = 0.5;

%---

% prepare

%---
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Dx1 = (b1-a1)/N1;

Dx2 = (b2-a2)/N2;

for i=1:N1+2

xdiv1(i) = a1+(i-1.0)*Dx1;

end

for j=1:N2+2

xdiv2(j) = a2+(j-1.0)*Dx2;

end

for j=1:N2+2

for i=1:N1+2

x1(i,j) = xdiv1(i);

x2(i,j) = xdiv2(j);

end

end

%---

% grid in the xy plane

%---

cf1 = 0.0;

cf2 = 0.0;

for j=1:N2+2

for i=1:N1+2

x(i,j) = L*x1(i,j);

wlow(i) = h + alow*(cos(2*pi*x1(i,j)) ...

+ cf1*cos(4*pi*x1(i,j)) ...

+ cf2*cos(6*pi*x1(i,j)) );

whig(i) = h+ahig*cos(2*pi*x1(i,j)+phasehig);

y(i,j) = (x2(i,j)-0.5)*wlow(i) + (x2(i,j)+0.5)*whig(i);

if(ichannel==2) % annulus

im = sqrt(-1);

r = exp(1.0+y(i,j)/h);



DR
AF
T

198 Tensors Unravelled, C. Pozrikidis, © 2026

theta = 2*pi*x(i,j)/L;

x(i,j) = r*cos(theta);

y(i,j) = r*sin(theta);

end

end

end

%---

% covariant base vectors

%---

for j=2:N2+1

for i=2:N1+1

gcov1_x(i,j) = (x(i+1,j)-x(i-1,j))/(2.0*Dx1);

gcov1_y(i,j) = (y(i+1,j)-y(i-1,j))/(2.0*Dx1);

gcov2_x(i,j) = (x(i,j+1)-x(i,j-1))/(2.0*Dx2);

gcov2_y(i,j) = (y(i,j+1)-y(i,j-1))/(2.0*Dx2);

end

end

for i=2:N1+1

gcov1_x(i,1) = (x(i+1,1)-x(i-1,1))/(2.0*Dx1);

gcov1_y(i,1) = (y(i+1,1)-y(i-1,1))/(2.0*Dx1);

gcov2_x(i,1) = (x(i,2)-x(i,1))/Dx2;

gcov2_y(i,1) = (y(i,2)-y(i,1))/Dx2;

end

%---

% wrap

%---

for j=1:N2+1

gcov1_x(1,j) = gcov1_x(N1+1,j);

gcov1_y(1,j) = gcov1_y(N1+1,j);

gcov2_x(1,j) = gcov2_x(N1+1,j);

gcov2_y(1,j) = gcov2_y(N1+1,j);

end
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%---

% covariant metric coefficients

%---

for j=1:N2+1

for i=1:N1+1

covmet11(i,j) = gcov1_x(i,j)*gcov1_x(i,j) ...

+ gcov1_y(i,j)*gcov1_y(i,j);

covmet12(i,j) = gcov1_x(i,j)*gcov2_x(i,j) ...

+ gcov1_y(i,j)*gcov2_y(i,j);

covmet21(i,j) = covmet12(i,j);

covmet22(i,j) = gcov2_x(i,j)*gcov2_x(i,j) ...

+ gcov2_y(i,j)*gcov2_y(i,j);

covg(i,j) = covmet11(i,j)*covmet22(i,j)-covmet12(i,j)^2;

srcovg(i,j) = sqrt(covg(i,j));

covmet = [ covmet11(i,j), covmet12(i,j);...

covmet21(i,j), covmet22(i,j)];

invcovmet = inv(covmet);

conmet11(i,j) = invcovmet(1,1);

conmet12(i,j) = invcovmet(1,2);

conmet21(i,j) = invcovmet(2,1);

conmet22(i,j) = invcovmet(2,2);

cong(i,j) = conmet11(i,j)*conmet22(i,j)-conmet12(i,j)^2;

end

end

%---

% wrap

%---

for j=1:N2+1

covmet11(N1+2,j) = covmet11(2,j);

covmet12(N1+2,j) = covmet12(2,j);
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covmet21(N1+2,j) = covmet21(2,j);

covmet22(N1+2,j) = covmet22(2,j);

covg(N1+2,j) = covg(2,j);

srcovg(N1+2,j) = srcovg(2,j);

conmet11(N1+2,j) = conmet11(2,j);

conmet12(N1+2,j) = conmet12(2,j);

conmet21(N1+2,j) = conmet21(2,j);

conmet22(N1+2,j) = conmet22(2,j);

cong(N1+2,j) = cong(2,j);

end

%---

% contravariant base vectors

%---

for j=1:N2+1

for i=1:N1+1

gcon1_x(i,j) = ( covmet22(i,j)*gcov1_x(i,j) ...

-covmet12(i,j)*gcov2_x(i,j))/covg(i,j);

gcon1_y(i,j) = ( covmet22(i,j)*gcov1_y(i,j) ...

-covmet12(i,j)*gcov2_y(i,j))/covg(i,j);

gcon2_x(i,j) = (-covmet12(i,j)*gcov1_x(i,j) ...

+covmet11(i,j)*gcov2_x(i,j))/covg(i,j);

gcon2_y(i,j) = (-covmet12(i,j)*gcov1_y(i,j) ...

+covmet11(i,j)*gcov2_y(i,j))/covg(i,j);

end

end

%---

% wrap

%---

for j=1:N2+1

gcon1_x(N1+2,j) = gcon1_x(2,j);

gcon1_y(N1+2,j) = gcon1_y(2,j);

gcon2_x(N1+2,j) = gcon2_x(2,j);

gcon2_y(N1+2,j) = gcon2_y(2,j);

end
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%-------------

% compute the effective velocities v1 and v2

%-------------

for j=2:N2

for i=2:N1+1

v1(i,j) = (conmet11(i+1,j)*srcovg(i+1,j) ...

-conmet11(i-1,j)*srcovg(i-1,j))/(2.0*Dx1) ...

+(conmet12(i,j+1)*srcovg(i,j+1) ...

-conmet12(i,j-1)*srcovg(i,j-1))/(2.0*Dx2);

v2(i,j) = (conmet21(i+1,j)*srcovg(i+1,j) ...

-conmet21(i-1,j)*srcovg(i-1,j))/(2.0*Dx1) ...

+(conmet22(i,j+1)*srcovg(i,j+1) ...

-conmet22(i,j-1)*srcovg(i,j-1))/(2.0*Dx2);

v1(i,j) = v1(i,j)/srcovg(i,j);

v2(i,j) = v2(i,j)/srcovg(i,j);

end

end

%---

% wrap

%---

for j=2:N2

v1(1,j) = v1(N1+1,j);

v2(1,j) = v2(N1+1,j);

end

for i=1:N1+1

v1(i,1) = v1(i,2);

v2(i,1) = v2(i,2);

v1(i,N2+1) = v1(i,N2);

v2(i,N2+1) = v2(i,N2);

end

%---------

% solve the Poisson equation

%---------
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for j=1:N2+1

for i=1:N1+2

source(i,j) = 0.0;

if(ichannel==1)

source(i,j) = 5.0; % typical

elseif(ichannel==2)

source(i,j) = 1.0; % typical

end

end

end

for i=1:N1+2

z(i) = 0.0; % typical

v(i) = 0.1; % typical

z(i) = 0.5; % typical

v(i) = 0.0; % typical

end

%---

% generate the linear system

%---

[mats,mat,rhs] = pois_fds_PPDD ...

...

(a1,b1 ...

,a2,b2 ...

,N1,N2 ...

,conmet11,conmet12,conmet22 ...

,v1,v2 ...

,source ...

,z,v ...

);

%---

% solution

%---

sol = rhs/mat';
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%---

% distribute the solution

%---

p = 0; % counter

for j=2:N2

for i=2:N1+1

p = p+1;

f(i,j) = sol(p);

end

end

for i=1:N1+2 % boundary conditions

f(i, 1) = z(i);

f(i,N2+1) = v(i);

end

for j=1:N2+1 % wrap

f(1,j) = f(N1+1,j);

end

%---

% plot

%---

mesh(x(1:N1+1,1:N2+1),y(1:N1+1,1:N2+1),f(1:N1+1,1:N2+1))

Running the code for a particular set of conditions generates the graph-
ics shown in Figure 3.8.4. Physically, the solution represents the velocity
distribution in viscous unidirectional flow between two wavy walls inside
a periodic channel.

3.8.7 Further channel-like geometries

Other wall geometries can be considered, as shown in Figure 3.8.5(a,
b) for a domain confined between a lower doubly sinusoidal wall and
an upper flat wall. Wrapping one period of the channel and stapling
the ends, we obtain an annular domain between two generally eccentric
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Figure 3.8.4 Solution of the Poisson equation with a uniform source
term in a channel-like domain.

cylinders, as shown in Figure 3.8.5(c, d). The method is implemented
in the code listed previously in this section.

Exercise

3.8.1 Reproduce Figures 3.8.1–3.8.4 for phase shift 1

2π between the
upper and lower wall and discuss the results.

3.9 Inside a quadrilateral

The interior of a quadrilateral in the xy plane can be mapped to a
rectangle in the parametric ξη plane confined inside a1 ≤ ξ ≤ b1 and
a2 ≤ η ≤ b2, as shown in Figure 3.9.1.

3.9.1 Mapping

The mapping is mediated by the bilinear transformation

x =
4∑

i=1

φi(ξ, η)vi, (3.9.1)

where vi are the vertices of the quadrilateral in the xy plane. The
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Figure 3.8.5 (a) Curvilinear grid and (b) solution of the Poisson
equation with a uniform source term above a wall whose profile
is described by two superposed sinusoids. (c) Curvilinear grid and
(d) solution of the Poisson equation with a uniform source term
inside an annulus.

corresponding interpolation functions are given by

φ1(ξ, η) =
1

A
(b1 − ξ)(b2 − η), φ2(ξ, η) =

1

A
(ξ − a1)(b2 − η),

φ3(ξ, η) =
1

A
(ξ − a1)(η − a2), φ4(ξ, η) =

1

A
(b1 − ξ)(η − a2),

(3.9.2)



D
R
A
F
T

206 Tensors Unravelled, C. Pozrikidis, © 2026

b

a

a

b
2

2

1 1

ξ

η

2
3

1

4

34

x

y
1 2

Figure 3.9.1 Mapping of a quadrilateral in the xy plane to a rect-
angle in the ξη plane by a bilinear transformation.

where A = (b1 − a1)(b2 − a2). Vertex 1 is mapped to ξ = a1, η = a2,
vertex 2 to ξ = b1, η = a2, vertex 3 to ξ = b1, η = b2, and vertex 4 to
ξ = a1, η = b2. An edge of the quadrilateral in the xy plane is mapped
to an edge in the ξη plane.

A typical example is shown in Figure 3.9.2(a, b). The distribution
of the covariant and contravariant base vectors inside a quadrilateral is
shown in Figure 3.9.2(c, d).

The distribution of the determinant g = det(g) is shown in Figure
3.9.3(a). The distributions of the contravariant metric coefficients, gξξ,
gξη, and gηη, are shown in Figure 3.9.3(b–d).

The distributions of the coefficients vη and vη involved in the expres-
sion for the Laplacian shown in (3.8.9) are displayed in Figure 3.9.3(e,
f).

3.9.2 Inverse mapping

To find the values of ξ and η corresponding to a specified point, x, we
may solve a system of two quadratic equations for two unknowns that
arises from the x and y component of (3.9.1).

Alternatively and more efficiently, we note that each interpolation
function has the form of an incomplete quadratic polynomial in two
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Figure 3.9.2 (a, b) Curvilinear coordinates generated by a bilinear
transformation inside a quadrilateral defined by four arbitrary ver-
tices in the xy plane. (c, d) Covariant and contravariant base
vectors. (e) Solution of the Poisson equation with a uniform
source term and Dirichlet boundary conditions.
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Figure 3.9.3 Distribution of (a) the determinant of the matrix of
covariant coefficients, g, and (b-d) contravariant metric coeffi-
cients inside a quadrilateral. (e, f) Distribution of the coefficients
vξ and vη defined in (3.5.29).
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variables missing the pure quadratic terms,

φi = κi + λiξ + µiη + νiξη, (3.9.3)

where κi–νi are four constants. Correspondingly, we may write

x = Ax + Bxξ + Cxη +Dxξη,

y = Ay + Byξ + Cyη +Dyξη, (3.9.4)

where Ax–Dx is a set of four constants and Ay–Dy is another set of
constants. Each set of coefficients can be found by solving a system
of four linear equations that arises by applying one of equations (3.9.4)
at the four vertices, yielding




1 a1 a2 a1a2
1 b1 a2 b1a2
1 b1 b2 b1b2
1 a1 b2 a1b2


 ·




Ax

Bx

Cx
Dx


 =




(v1)x
(v2)x
(v3)x
(v4)x


 , (3.9.5)

and a companion linear system where x is replaced by y. Combining
the two equations in (3.9.4), we obtain a linear equation involving ξ
and η,

Dyx−Dxy = Dy(Ax + Bxξ + Cxη)
−Dx(Ay + Byξ + Cyη +Dyξη). (3.9.6)

Solving this equation for η or ξ and substituting the result into one of
the equations in (3.9.4) provides us with a quadratic equation for ξ or
η.

3.9.3 Poisson equation

A finite-difference method for solving the Poisson equation inside a
quadrilateral can be developed working as in Section 3.7 for a channel-
like domain. A Matlab code entitled quad, located in directory Quad

of Tunlib, solves the Poisson subject to the Dirichlet boundary con-
dition around the four edges, and visualizes the solution.

Running the code for a particular set of conditions generates the
graphics shown in Figure 3.9.2(e). Physically, the solution represents
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the velocity profile in viscous unidirectional flow or the shape of a mem-
brane attached to the edges of the quadrilateral, subject to a pressure
difference driving the the deformation.

3.9.4 Flow rate

The integral of the solution over the quadrilateral can be computed
from the expression

∫∫
f(x, y) dx dy =

∫∫
f(ξ, η)

√
g dξ dη. (3.9.7)

The integral on the right-hand side can be computed by standard nu-
merical methods as a sum over cells defined by adjacent pairs of curvi-
linear grid lines. The cell values can be computed from the grid node
values by sensible interpolation. In the case of unidirectional viscous
flow, this integral represents the flow rate.

Exercise

3.9.1 Write a code that generates ξ and η for given x and y. If (ξ, η)
lies inside the square, then (x, y) lies inside the quadrilateral.

3.10 Conformal mapping

Earlier in this chapter, we discussed numerical solutions of the Pois-
son equation in a channel-like or quadrilateral shaped domain in the
xy plane by mapping each domain to a rectangle or square in the ξη
plane, and then solving a modified Poisson equation inside the rect-
angle or square. An important advantage of orthogonal mapping is
that it provides us with orthogonal curvilinear coordinates that sim-
plify the modified Poisson equation and facilitate the implementation
of numerical methods.

3.10.1 Mapping function

A convenient method of generating orthogonal coordinates is based
on the notion of conformal mapping. To formulate the method, we
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introduce a complex variable in the xy plane,

z = x+ iy, (3.10.1)

where i is the imaginary unit, and introduce another complex variable,

ζ = ξ + i η. (3.10.2)

A point in the complex z plane can be mapped to a point in the complex
ζ plane, and vice versa, using forward or reverse mapping,

z = F(ζ), (3.10.3)

so that

x = Freal(ξ, η), y = Fimaginary(ξ, η). (3.10.4)

It can be shown that, conformal mapping generates curvilinear coordi-
nates that are orthogonal and isometric,

gξη = 0, gξη = 0, gηη = gξξ =
1

gηη
=

1

gξξ
. (3.10.5)

Consequently, the matrices of covariant and contravariant metric coef-
ficients are proportional to the identity tensor, I.

3.10.2 Laplacian

The Laplacian of a scalar field, f(x, y), given in its general form in
(3.5.30),

∇2f = gξξ
∂2f

∂ξ2
+ 2 gξη

∂2f

∂ξ∂η
+ gηη

∂2f

∂η2
+ vξ

∂f

∂ξ
+ vη

∂f

∂η
, (3.10.6)

where

vξ ≡ 1√
g

∂

∂xi

(
giξ

√
g
)
, vη ≡ 1√

g

∂

∂xi

(
giη

√
g
)
, (3.10.7)

simplifies to

∇2f =
1

gξξ
∇̂2f, (3.10.8)
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where a caret (hat) indicates differentiation with respect to (ξ, η),

∇̂2f =
∂2f

∂ξ2
+
∂2f

∂η2
. (3.10.9)

We see that only one component of the metric tensor arises on the
right-hand side of (3.10.8). The Poisson equation, ∇2f + s = 0 takes
the form

∇̂2f = gξξ s, (3.10.10)

where s is a distributed source. The Laplace and Poisson equations
can be solved using the finite-difference methods discussed previously
in this chapter for a channel-like or quadrilateral domain.

3.10.3 Implementation

In the practical application of the method, we introduce a complex
function that maps a square or some other simple shape in the ζ plane
to the solution domain in the z plane. As an example, the shape of a
square mapped by the function

F (ζ) =
1√
2
(1 + i− 0.9 ζ2) (1− 0.8 ζ4) ζ (3.10.11)

is shown in Figure 3.10.1(a, b). Both grids depicted in this figure are
orthogonal; the grid in the ξη plane is Cartesian, and the grid in the xy
plane is curvilinear. The distributions of the determinant of the matrix
of covariant coefficients, g, and contravariant metric coefficient, gξξ,
are shown in Figure 3.10.1(c, d).

A finite-difference method for solving the Poisson equation with
Dirichlet boundary conditions is implemented in a code located in di-
rectory Map of Tunlib. For simplicity, the covariant base vectors
are computed by central difference approximations. The solution for
the homogeneous Dirichlet boundary condition and a uniform source is
shown in Figure 3.10.2.
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Figure 3.10.1 (a, b) Curvilinear coordinates generated by a con-
formal mapping the unit square centered at the origin of the ξη
plane to some shape in the xy plane. (c) Distribution of the
determinant of the matrix of covariant coefficients, g. (c, d)
Distribution of the contravariant metric coefficient, gξξ.
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Figure 3.10.2 Solution of Poisson’s equation by a finite-difference
method in a domain generated by conformal mapping.

Exercise

3.10.1 Duplicate Figure 3.10.1 for a mapping function of your choice.

3.11 Elliptic coordinates

For convenience, we denote the contravariant coordinates by x1 = ξ
and x2 = η. Elliptic coordinates, (ξ, η), are orthogonal curvilinear
coordinates defined by the conformal mapping function

x+ i y = A sinh(ξ + i η), (3.11.1)

where i is the imaginary unit, i2 = −1, and A is a real constant.
Resolving the mapping function into its real and imaginary parts, we
obtain the equations

x = A sinh ξ cos η, y = A cosh ξ sin η. (3.11.2)

Fixing the value of ξ provides us with an equation for an ellipse, as
shown in Figure 3.11.1. As ξ tends to infinity, the contour lines of
constant ξ tend to become concentric circles.

Consider a particular value of ξ = ξ0, and set

a = A sinh ξ0, b = A cosh ξ0, (3.11.3)
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Figure 3.11.1 Illustration of grid lines based on elliptic coordinates
in the xy plane.

where a and b are the ellipse semi-axes along the x and y axes with
b ≥ a. Solving for A and ξ0, we find that

tanh ξ0 =
a

b
, A =

a

sinh ξ0
. (3.11.4)

These equations can be used to compute ξ0 and A from specified values
of a and b.

3.11.1 Grid generation

The followingMatlab code named elliptic grid, located in directory El-
liptic of Tunlib, generates the grid shown in Figure 3.11.1 outside
an ellipse with aspect ratio b/a = 2:

%---

% parameters

%---

a = 1; % x semi-axis of innermost ellipse

b = 2; % y semi-axis of innermost ellipse

%---
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% compute xi_0 and A

%---

xi0 = atanh(a/b);

snhxi0 = sinh(xi0); cshxi0 = cosh(xi0);

A = a/snhxi0;

ximax = log(32.0*a/A); % arbitrary

Np = 2;

Nxi = Np*8;

Net = Np*16;

%---

% grid

%---

Dxi = (ximax-xi0)/Nxi;

for i=1:Nxi+1

xi(i) = xi0+(i-1.0)*Dxi;

snhxi(i) = sinh(xi(i));

cshxi(i) = cosh(xi(i));

end

Deta = 2.0*pi/Net;

for j=1:Net+1

eta(j) = (j-1.0)*Deta;

cseta(j) = cos(eta(j));

sneta(j) = sin(eta(j));

end

%---

% grid points

%---

for i=1:Nxi+1

for j=1:Net+1
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x(i,j) = A*snhxi(i)*cseta(j);

y(i,j) = A*cshxi(i)*sneta(j);

J(i,j) = A*sqrt(cshxi(i)^2-sneta(j)^2);

end

end

%---

% polar angle around the origin (theta)

% (different than eta)

%---

xcnt = 0.0; ycnt = 0.0;

for j=1:Net

rr = sqrt((x(1,j)-xcnt)^2+(y(1,j)-ycnt)^2);

theta(j) = acos((x(1,j)-xcnt)/rr);

if(y(1,j)<0.0)

theta(j) = 2*pi-theta(j);

end

end

theta(Net+1) = 2*pi+theta(1);

%---

% plot

%---

for j=1:Net+1

plot(x(:,j),y(:,j),'r')

end

for i=1:Nxi+1

plot(x(i,:),y(i,:),'k')

end

3.11.2 Base vectors and components of the metric tensor
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The covariant base vectors are given by

gξ =
∂x

∂ξ
= A

(
cosh ξ cos η ex + sinh ξ sin η ey

)
(3.11.5)

and

gη =
∂x

∂η
= A

(
− sinh ξ sin η ex + cosh ξ cos η ey

)
. (3.11.6)

The only non-zero covariant components of the metric tensor are the
diagonal components

gξξ = gηη = A2 (cosh2 ξ cos2 η + sinh2 ξ sin2 η ). (3.11.7)

Simplifying, we obtain

gξξ = gηη = A2 (cosh2 ξ − sin2 η ). (3.11.8)

In the Matlab code listed previously in this section, J =
√
gξξ.

Since the coordinates are orthogonal, the contravariant base vectors
are aligned with the covariant base vectors. We find that

gξ =
1

gξξ
gξ, gη =

1

gηη
gη, (3.11.9)

and thus gξξ = gηη = 1/gξξ = 1/gηη.

3.11.3 Poisson equation

The Poisson equation, ∇2f + s = 0, takes the form

∇̂2f + gξξ s = 0, (3.11.10)

where a caret (hat) indicates differentiation with respect to the elliptic
coordinates (ξ, η), which can be expanded as

∂2f

∂ξ2
+
∂2f

∂η2
+ A2 (cosh2 ξ − sin2 η ) s(ξ, η) = 0, (3.11.11)

where s is a specified source term. The solution domain for an annular
region confined between two ellipses is a rectangle confined between
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ξ0 ≤ u ≤ ξ1 and 0 ≤ η ≤ 2π. A periodicity condition is imposed with
respect to η.

3.11.4 Finite-difference method

The solution of the Poisson equation can be found by a finite-difference
method. The point-Gauss–Seidel (PGS) method is an iterative method
according to the following scheme:

fn+1
i,j =

1

2 (1 + β)

(
fn
i+1,j + fn

i−1,j + β (fn
i,j+1 + fn

i,j−1)

+A2 (cosh2 ξ − sin2 η )si,j
)
, (3.11.12)

where the indices i and j parametrize grid points, n is an iteration
number and β = (∆ξ/∆η)2.

The numerical method with the Dirichlet boundary condition at the
inner and outer cylinder is implemented in the following Matlab code
named elliptic DD, located in directory Elliptic of Tunlib:

for j=1:Net+1

for i=1:Nxi+1

s(i,j) = 1.0; % source

end

end

for j=1:Net+1

for i=1:Nxi+1

f(i,j) = 0.0; % initialize

end

end

for j=1:Net+1

f(1, j) = 0.0; % inner boundary condition

f(Nxi+1,j) = 0.5; % outer boundary condition

end

beta = (Dxi/Det)^2;

%---
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% iterations

%---

tolerance = 0.0001;

for iter = 1:200

for i=2:Nxi % periodicity condition

f(i,1) = f(i,Net+1);

f(i,Net+2) = f(i,2);

end

corrmax = 0.0;

fc1 = 1/(2.0*(1+beta));

Dxis = Dxi^2;

for j=2:Net+1

for i=2:Nxi

fold = f(i,j);

f(i,j) = fc1*( f(i+1,j)+f(i-1,j) ...

+ beta*(f(i,j+1)+f(i,j-1)) ...

+ Dxis*J(i,j)^2*s(i,j) );

corr = abs(fold-f(i,j));

if(corr>corrmax) corrmax=corr; end

end

end

if(corrmax<tolerance) break; end

end % of iterations

%---

% plot

%---

figure(2)
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Figure 3.11.2 Solution of the Poisson equation with a uniform
source computed in elliptic coordinates.

surf(x,y,f(1:Nxi+1,1:Net+1))

Running the code generates the mushroom-like solution shown in Figure
3.11.2.

3.11.5 Alternative elliptic coordinates

An alternative set of elliptic coordinates, (ξ, η), is defined by the con-
formal mapping function

x+ i y = A cosh(ξ + i η), (3.11.13)

where i is the imaginary unit, i2 = −1, and A is a real constant.
Resolving the mapping function into its real and imaginary parts, we
obtain the equations

x = A cosh ξ cos η, y = A sinh ξ sin η. (3.11.14)

Consider a particular value of ξ = ξ0, and set

a = A cosh ξ0, b = A sinh ξ0, (3.11.15)
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where a and b are the ellipse semi-axes along the x and y axes with
a ≥ b. Solving for A and ξ0, we find that

tanh ξ0 =
b

a
, A =

b

sinh ξ0
. (3.11.16)

These equations can be used to compute ξ0 and A from specified semi-
axes, a and b.

Exercise

3.11.1 Confirm that gξξ (gξ⊗gξ+gη⊗gη) = I, where I is the identity
matrix.
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Chapter 4

Non-Cartesian coordinates

The basic concepts, derivations, and equations discussed in Chapter 3
for non-Cartesian, rectilinear or curvilinear coordinates in two dimen-
sions can be extended in a straightforward fashion to three or higher
dimensions. In this chapter, we introduce further basic notions, dis-
cuss vector and tensor components, study coordinate transformations,
and derive expressions for covariant derivatives of vector and tensor
components.

In Chapter 5, we will derive expressions for the gradient and other
differential operators on vector and tensor fields following a procedure
that circumvents a great deal of algebraic manipulations, and then will
proceed to study applications.

4.1 Basic framework

A system of nonorthogonal coordinates in three dimensions is shown
in Figure 4.1.1. Contravariant lines of constant xi are drawn as solid
lines and covariant lines of constant xi are drawn as broken lines, where
subscripts and superscripts range over 1, 2, 3.

The covariant base vectors are defined as

gi =
∂x

∂xi
, (4.1.1)

where x = (x, y, z) is position in three-dimensional space. The differ-
ential displacement is given by

dx = gi dx
i. (4.1.2)

223
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Figure 4.1.1 Illustration of three-dimensional nonorthogonal curvi-
linear coordinates. Contravariant coordinate lines, (x1, x2, x3),
are drawn with solid lines and covariant coordinate lines,
(x1, x2, x3), are drawn with broken lines.

The contravariant base vectors are defined uniquely by the biorthonor-
mality condition

gi · gj = δij , (4.1.3)

where δij is Kronecker’s delta. Further properties of the contravariant
base vectors are discussed in Section 4.2

4.1.1 Matrices of base vectors

The covariant base vectors can be arranged at the columns of a matrix.
In three dimensions, this matrix takes the form

F ≡




↑ ↑ ↑
g1 g2 g3

↓ ↓ ↓


 =



∂x/∂x1 ∂x/∂x2 ∂x/∂x3

∂y/∂x1 ∂y/∂x2 ∂y/∂x3

∂z/∂x1 ∂z/∂x2 ∂z/∂x3


 . (4.1.4)

In continuum mechanics, the matrix F is known as the deformation

gradient.

The contravariant base vectors, gi, can be arranged at the columns

of another matrix,

Φ ≡




↑ ↑ ↑
g1 g2 g3

↓ ↓ ↓


 =



∂x1/∂x ∂x2/∂x ∂x3/∂x
∂x1/∂y ∂x2/∂y ∂x3/∂y
∂x1/∂z ∂x2/∂z ∂x3/∂z


 . (4.1.5)
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Using the rules of matrix multiplication and enforcing the orthogonality
property (4.1.3), we find that

FT ·Φ = I, Φ = F−T, F = Φ−T, (4.1.6)

where the superscript −T denotes the inverse of the matrix transpose,
which is equal to the transpose of the matrix inverse.

4.1.2 Jacobian metric

The Jacobian metric associated with the covariant base vectors, g1,
g2, and g3, is the volume of a parallelepiped defined by these vectors,
given by

J ≡ g1 · (g2 × g3) = det(F) =
1

det(Φ)
. (4.1.7)

The physical volume corresponding to a small parallelepiped whose sides
are parallel to g1, g2, and g3, is

dV (x) = J dx1 dx2 dx3. (4.1.8)

This relation can be integrated over a region in contravariant coordinate
space to generate the volume of the corresponding region in physical
space.

4.1.3 Contravariant from covariant base vectors

Given a set of covariant base vectors in three dimensions, gi for i =
1, 2, 3, the contravariant base vectors, gi, can be constructed using the
formula

gi =
1

2

1

J ǫijk gj × gk, (4.1.9)

where ǫijk is the Levi–Civita symbol and summation is implied over the
repeated indices j and k. Explicitly, the contravariant base vectors are
given by

g1 =
1

J g2 × g3, g2 =
1

J g3 × g1, g3 =
1

J g1 × g2. (4.1.10)
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These formulas can be expressed collectively as

gi × gj = J ǫijk g
k, (4.1.11)

which confirms that gk is perpendicular to gi and gj, for k 6= i, j.
Taking the inner product of this equation with an arbitrary covariant
base vector, gm, we find that

(gi × gj) · gm = J ǫijm. (4.1.12)

For j = 1, j = 2, and m = 3, we recover (4.1.7).

4.1.4 Covariant from contravariant base vectors

In three dimensions, the covariant base vectors can be computed from
the contravariant base vectors using the expressions

gi =
1

2
J ǫijk g

j × gk. (4.1.13)

Explicitly,

g1 = J g2 × g3, g2 = J g3 × g1, g3 = J g1 × g2. (4.1.14)

These formulas can be compiled into the form

gi × gj =
1

J ǫijk gk, (4.1.15)

which confirms that gk is perpendicular to gi and gj for k 6= i, j.

Exercise

4.1.1 Combining (4.1.12) and (4.1.9), we find that

gi · dx =
1

2

1

J ǫijk (gj × gk) · (gmdx
m) =

1

2
ǫijkǫjkm dxm. (4.1.16)

Use the properties of the Levi–Civita symbol to obtain gi · dx = dxi,
as shown in (4.2.3).
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4.2 Contravariant base vectors

Combining the expression for the contravariant base vectors given in
(4.1.9), with the expression for the differential displacement given in
(4.1.2), we find that

gi · dx =
1

2

1

J ǫijk (gj × gk) · (gmdx
m). (4.2.1)

Now using (4.1.12) we obtain

gi · dx =
1

2
ǫijk ǫjkm dxm. (4.2.2)

Recalling the properties of the Levi–Civita symbol, we obtain

gi · dx = dxi. (4.2.3)

Integrating this equation between two arbitrary points, A and B, we
find that

∫ B

A

gi · dx = (xi)B − (xi)A. (4.2.4)

Consequently,

∮
gi · dx = 0, (4.2.5)

where the integration is performed along an arbitrary closed contour in
space.

4.2.1 Gradient of contravariant coordinates

The contravariant coordinates, xi, can be regarded as functions of
position, x. We will show that the contravariant base vectors are the
gradients of the contravariant coordinates,

gi = ∇xi, (4.2.6)

where ∇ is the gradient operator. Physically, gi points in the direction
of maximum increase of xi with respect to arc length. To compute the
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gradients on the right-hand side of (4.2.6), the functions xi(x) must
be available, which is the case only for simple configurations.

Since the curl of the gradient of any function is identically zero, the
contravariant base vector fields are irrotational,

∇× gi = 0. (4.2.7)

Using the Stokes circulation theorem, we find that the circulation of
each contravariant base vector along any arbitrary closed loop in space
is zero, as shown in (4.2.5).

4.2.2 Inverses of vector functions

To demonstrate (4.2.6), we consider a vector field, f , that is a function
of another vector field, q, and its inverse,

f = F(q), q = Q(f). (4.2.8)

In the present context, the vectors f and q are interpreted as one-
dimensional arrays. We may write

df = dq ·∇qF(q), dq = df ·∇fQ(f), (4.2.9)

where the gradient ∇q operates with respect to q and the gradient ∇f

operates with respect to f . Combining these equations, we find that

∇Fq(q) ·∇fQ(f) = I, (4.2.10)

where I is the identity matrix. In index notation,

∂ Fγ

∂qα

∂ Qβ

∂fγ
= δαβ, (4.2.11)

where δβγ is Kronecker’s delta and Greek indices indicate array entries.

The contravariant coordinates, xi, can be regarded as functions of
position, x, and vice versa,

xi = Fi(x), xα = Qα(x
1, x2, x3). (4.2.12)

Setting in (4.2.11)

Fγ = xγ , fγ = xγ , qα = xi, Qβ = xj , (4.2.13)
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we obtain

∂x

∂xi
·∇xj = gi ·∇xj = δij , (4.2.14)

which confirms that the contravariant base vectors are given by (4.2.6).

Exercise

4.2.1 Discuss Stokes’s circulation theorem in three-dimensional space.

4.3 Metric coefficients

The covariant and contravariant metric coefficients, defined as

gij ≡ gi · gj, gij ≡ gi · gj, (4.3.1)

can be collected into two matrices denoted by

g =



g11 g12 g13
g21 g22 g23
g31 g32 g33


 = FT · F = Φ−1 ·Φ−T (4.3.2)

and

γ =



g11 g12 g13

g21 g22 g23

g31 g32 g33


 = ΦT ·Φ = F−1 · F−T. (4.3.3)

Multiplying these expressions, we find that

g · γ = I, (4.3.4)

which shows that γ is the inverse of g, and vice versa.

4.3.1 Jacobian metric

Since the determinant of a matrix is equal to the determinant of the
transpose, we find from (4.3.2) or (4.3.3) that g = J 2 or

J =
√
g, (4.3.5)
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where

g ≡ det(g) =
1

det(γ)
(4.3.6)

and J = det(F).

4.3.2 Fundamental form of space

Using the definitions of the covariant metric coefficients, we find that
the square of the magnitude of the differential displacement is given by

dx · dx = (gi dx
i) · (gj dx

j), (4.3.7)

where summation is implied over the repeated indices, i and j. Dis-
tributing the multiplications and invoking the definition of the covariant
metric coefficients, we derive the fundamental form of space,

ds2 ≡ dx · dx = gij dx
i dxj , (4.3.8)

where ds2 is the square of differential distance. We see that the differ-
ential distance is defined with respect to the contravariant coordinates
and covariant metric coefficients.

4.3.3 Base vector conversion

Rearranging (4.3.2)), we find that

F = g · F−1 = g ·ΦT, Φ = γ ·Φ−1 = γ · FT, (4.3.9)

which shows that

gi = gij g
j, gi = gij gj. (4.3.10)

These expressions provide us with rules for raising and lowering indices.

4.3.4 Coordinate surface metrics

The differential surface area of the face labeled A in Figure 4.1.1 is
given by

dSA = |g2 × g3| dx2 dx3 = J |g1| dx2 dx3. (4.3.11)
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Setting |g1| =
√
g11, we obtain

dSA = J
√
g11 dx2 dx3. (4.3.12)

The unit vector normal to this surface is

nA =
g1

√
g11

. (4.3.13)

Combining the last two equations, we obtain

nA dSA = J g1 dx2 dx3. (4.3.14)

This expression can be used to compute the flux of a vector field across
surface A, as discussed in Section 4.3.

4.3.5 Summary

An assortment of relations are given in Table 4.3.1. To prove the sixth
relation, we note that

∂g

∂gij
= gcij = g g−1

ji = g gji, (4.3.15)

where gcij is the cofactor of the element gij in the matrix g. Substituting
g = J 2 yields the aforementioned relation. The seventh relation in
Table 4.3.1 arises by applying the chain rule and invoking the sixth
relation.

Exercise

4.3.1 Derive the seventh relation in Table 4.3.1.

4.4 Covariant coordinates

A family of non-intersecting lines can be drawn that are tangential to
the contravariant base vectors, gi for i = 1, 2, 3. The position along
a line in the ith family can be parametrized by a coordinate xi. The
triplet (x1, x2, x3), constitutes covariant curvilinear coordinates.
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1 I = gij g
i ⊗ gj = gi ⊗ gi = gi ⊗ gi = gij gi ⊗ gj

2 γ = g−1

3 J =
√
det(g) = 1√

det(γ)
4 gi = gij g

j

5 gi = gij gj

6
∂J
∂gij

=
1

2
J gij

7
∂J
∂xk

=
1

2
J gij

∂gij
∂xk

Table 4.3.1 An assortment of relations pertaining to general, or-
thogonal or nonorthogonal curvilinear coordinates.

4.4.1 Position as a function of covariant coordinates

The position in three-dimensional space can be regarded as a function
of covariant coordinates,

x(x1, x2, x3). (4.4.1)

An infinitesimal displacement vector can be expressed as

dx =
∂x

∂x1
dx1 +

∂x

∂x2
dx2 +

∂x

∂x3
dx3, (4.4.2)

where dx1, dx2, and dx2 are differential increments regarded as covari-
ant components of the differential displacement, dx.

Since ∂x/∂xi is parallel to g1, we can introduce three appropriate
functions, α1(x1, x2, x3), α2(x1, x2, x3), and α3(x1, x2, x3), and write

∂x

∂x1
=

1

α1
g1,

∂x

∂x2
=

1

α2
g2,

∂x

∂x3
=

1

α2
g3. (4.4.3)
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Consequently,

dx =
1

α1
g1dx1 +

1

α2
g2dx2 +

1

α3
g3dx3, (4.4.4)

as discussed in Section 4.2.

The covariant coordinates can be regarded as functions of the con-
travariant coordinates. Using the chain rule, we write

gi ≡
∂x

∂xi
=

∂x

∂xj

∂xj
∂xi

, (4.4.5)

yielding

gi =
1

α1

g1∂x1
∂xi

+
1

α2

g2∂x2
∂xi

+
1

α3

g3∂x3
∂xi

(4.4.6)

for i = 1, 2, 3. Comparing this expression with the rule for lowering an
index, gi = gijg

j, we obtain the relations

gi1 =
1

α1

∂x1
∂xi

, gi2 =
1

α2

∂x2
∂xi

, gi3 =
1

α3

∂x3
∂xi

, (4.4.7)

which can be integrated to provide us with the covariant coordinate
field, x1, x2, and x3.

4.4.2 Compatibility conditions

Equations (4.4.7) require that the functions α1, α2, and α3 satisfy the
compatibility conditions

∂(α1 gi1)

∂xk
=
∂(α1 gk1)

∂xi
,

∂(α2 gi2)

∂xk
=
∂(α2 gk2)

∂xi
,

∂(α3 gi3)

∂xk
=
∂(α3 gk3)

∂xi
(4.4.8)

for any pair, i, k. These compatibility conditions are not necessarily
satisfied when α1 = 1, α2 = 1, and α3 = 1. Once α1, α2, and α3 are
specified in agreement with the compatibility conditions, the covariant
coordinates can be deduced, as discussed in Section 4.2.
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4.4.3 Orthogonal coordinates

The compatibility conditions for orthogonal coordinates require that

∂(α1 g11)

∂x2
= 0,

∂(α1 g11)

∂x3
= 0,

∂(α2 g22)

∂x1
= 0,

∂(α2 g22)

∂x3
= 0, (4.4.9)

∂(α2 g33)

∂x1
= 0,

∂(α2 g33)

∂x2
= 0.

Integrating these equations, we obtain

α1 =
1

g11
A(x1), α2 =

1

g22
B(x2), α3 =

1

g33
C(x3), (4.4.10)

where A(x1), B(x2), and C(x3), are arbitrary functions. Integrating
equations (4.4.7), we obtain

x1 =

∫
A(x1) dx1, x2 =

∫
B(x2) dx2,

x3 =

∫
B(x3) dx3. (4.4.11)

For A(x1) = 1 B(x2) = 1, and C(x2) = 1, we find that x1 = x1,
x2 = x2, x3 = x3, and

∂x

∂x1
= g11 g

1,
∂x

∂x2
= g22 g

2,
∂x

∂x3
= g33 g

3. (4.4.12)

4.4.4 Construction

More generally, the covariant coordinate field can be constructed using
a procedure that is similar to that discussed in Section 3.2.

Exercise

4.4.1 Derive a set of covariant coordinates associated with spherical
polar coordinates.



D
R
A
F
T

4.5 Vectors 235

4.5 Vectors

A vector, v, can be expanded in terms of covariant base vectors, gi, or
contravariant base vectors, gi, in two combinations, as

v = vi gi = vi g
i, (4.5.1)

where vi are the contravariant vector components, vi are the covariant
vector components, and summation is implied over the repeated index,
i. Projecting (4.5.1) on a covariant or contravariant base vector, we
find that

vi = v · gi, vi = v · gi. (4.5.2)

To deduce the contravariant vector components from the first equation,
the contravariant base vectors, gi, must be available.

4.5.1 Contravariant from covariant components

Projecting the decomposition (4.5.1) onto gj or gj, where j is a free
index, we find that the components are related by

vi = gijvj, vi = gijv
j, (4.5.3)

where summation is implied over the repeated index, j. These expres-
sions provide us with ways of raising or lowering the indices, thereby
deducing the contravariant from the covariant components, and vice

versa.

4.5.2 Inner vector product

The inner product of two vectors, u and v, is a scalar,

u · v ≡ (ui gi) · (vj gj) = uivj gi · gj = uivj δij . (4.5.4)

Simplifying, we obtain

u · v = uivi = viui (4.5.5)

for any pair of contravariant–covariant components.
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4.5.3 Vector flux

Using expression (4.3.14), repeated below for convenience,

nA dSA = J g1 dx2 dx3, (4.5.6)

we find that the flux of vector field, v, across the face labeled A in
Figure 4.5.1 is given by

v · nA dSA = J v · g1 dx2 dx3 = J v1 dx2 dx3, (4.5.7)

involving the first contravariant component of v. Similar expressions
can be written for the faces labeled B and C in Figure 4.5.1.

4.5.4 Divergence of a vector field

Working as in Section 2.4.3, we apply the divergence theorem over a
differential coordinate volume element and find that the divergence of
a vector field, v, is given by

∇ · v =
1√
g

∂

∂xi
(
vi
√
g
)
, (4.5.8)

where summation is implied over the repeated index, i. The deriva-
tives on the right-hand side can be discretized by standard numerical
methods.

4.5.5 Cross product

Working as in Section 3.4.3, we find that the cross product of two
vectors, v and u, is given by

v × u =
1

J ǫijk viuj gk = J ǫijk v
iuj gk, (4.5.9)

involving corresponding pairs of vector components.

Exercise

4.5.1 Derive expression (4.5.8).
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4.6 Biorthogonal v. curvilinear

Biorthogonal bases discussed in Chapter 2 involve two dual sets of base
vectors, bi and bi, that satisfy the orthogonality conditions

bi · bj = ω(i) δij, (4.6.1)

where ω(i) ≡ bi ·bi, summation is not implied over the repeated index,
i, and δij is Kronecker’s delta representing the identity matrix: δij = 1
if i = j, or 0 otherwise.

The framework of non-orthogonal coordinates discussed in this chap-
ter can be regarded as a specialization and an extension of the apparatus
of biorthogonal bases discussed in Chapter 3. Correspondence of sym-
bols and notions and symbols is summarized in Table 4.6.1. We note,
in particular, that the coefficients ω(i) in general biorthogonal bases
are arbitrary, but restricted to be unity in the framework of curvilinear
coordinates.

In the framework of curvilinear coordinates, contravariant and co-
variant are introduced, and base vectors are regarded as functions of
position mediated by contravariant and covariant coordinates. Spatial
variations of base vectors may then be considered by rates that are
quantified by the Christofell symbols.

Exercise

4.6.1 Add to Table 4.6.1 another entry of your choice.

4.7 Tensors

A tensor, T, can be expressed in terms of covariant or contravariant
base vectors in four combinations,

T = T ij gi ⊗ gj = T i
◦j gi ⊗ gj

= T ◦j
i gi ⊗ gj = Tij g

i ⊗ gj, (4.7.1)
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where summation is implied over the repeated indices, i and j; we recall

General biorthogonal Curvilinear

bi gi = ∂x/∂xi covariant base vectors

bi gi = ∇xi contravariant base vectors

bi · bi = ω(i) gi · gi = 1 no summation over i.

bij gij covariant metric coefficients

bij gij contravariant

metric coefficients
b g matrix of covariant

metric coefficients
β γ matrix of contravariant

metric coefficients
J◦ J Jacobian

J ◦
1

J Jacobian

bi =
1

ω(j)
bji bj gi = gji g

j Conversion

bi =
1

ω(j)
bji b

j gi = gji gj Conversion

vi =
1

ω(i)
bij vj vi = gij vj Conversion

vi =
1

ω(i)
bij v

j vi = gij v
j Conversion

Table 4.6.1 Correspondence of notation and symbols for biorthog-
onal and curvilinear bases.
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that the circular symbol, ◦, is a blank space holder. The coefficients
T ij are the contravariant tensor components, the coefficients Tij are
the covariant components, and the coefficients T i

◦j and T
◦j
i are mixed

components.

Projecting these expansions onto covariant or contravariant base
vectors, we find that

T i
◦j = gikTkj, Tij = gikT

k
◦j , T ij = gikTkmg

mj, (4.7.2)

and other similar relations for raising or lowering indices, where sum-
mation is implied over repeated indices.

4.7.1 Tensor transpose

The transport of a tensor, T, is given by

V ≡ TT = T ij gj ⊗ gi = T i
◦j g

j ⊗ gi

= T ◦j
i gj ⊗ gi = Tij g

j ⊗ gi, (4.7.3)

where summation is implied over the repeated indices, i and j. Note
that transposing amounts to changing the order the base vectors in the
tensor product. We see that

V ji = T ij , S◦i
j = T i

◦j , Sj
◦i = T ◦j

i , Sji = Tij . (4.7.4)

In the case of a symmetric tensor, we set V = T and obtain

T ij = T ji, T i
◦j = T ◦i

j , Tij = Tji. (4.7.5)

In the case of a skew-symmetric tensor, we set V = −T and obtain

T ij = −T ji, T i
◦j = −T ◦i

j , Tij = −Tji. (4.7.6)

Note that, for a skew-symmetric tensor, the diagonal elements of T ij

and Tij are zero.

4.7.2 Product of two tensors

The product of two tensors, T and S, is another tensor given by

W ≡ T · S = (T i
◦m gi ⊗ gm) · (Snj gn ⊗ gj). (4.7.7)
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We find that

W = T i
◦m S

nj (gi ⊗ gm) · (gn ⊗ gj), (4.7.8)

and then

W = T i
◦m S

nj (gm · gn) gi ⊗ gj, (4.7.9)

yielding

W = T i
◦nS

nj gi ⊗ gj . (4.7.10)

The pure contravariant components of W are thus given by

wij = T i
◦nS

nj. (4.7.11)

Working in a similar fashion, we find that

W = T ◦n
i Snj g

i ⊗ gj = TinS
nj gi ⊗ gj

= T inSnj gi ⊗ gj = T i
◦nS

nj gi ⊗ gj . (4.7.12)

4.7.3 Metric tensor

Using the orthogonality properties of the base vectors, we find that the
metric tensor is the identity matrix,

G = gij g
i ⊗ gj = gi ⊗ gi = gi ⊗ gi = gij gi ⊗ gj = I. (4.7.13)

Using the gradient form of the contravariant base vectors shown in
(4.2.6), we find that

I = gij ∇xi ⊗∇xj . (4.7.14)

4.7.4 Tensor inverse

The inverse of a tensor, T, denoted by S ≡ T−1, satisfies (4.7.12) with
W = I, where I is the identity matrix. Recalling the representation of
the identity matrix shown in (4.7.13), we find that

T ◦n
i Snj = gij, TinS

nj = δij ,

T inSnj = δij, T i
◦nS

nj = gij. (4.7.15)
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The second and third relations imply that

[Tij ] = [Sij]−1, [T ij ] = [Sij ]
−1, (4.7.16)

where [Tij ] is matrix whose ijth element is Tij . Similar definitions apply
for the other three matrices.

4.7.5 Double-dot product

The double-dot product of two tensors, T and S, is a scalar,

T : S ≡ trace(TT · S) = trace(T · ST) (4.7.17)

or

T : S = TijS
ij = T ijSij , (4.7.18)

where the superscript T denotes the matrix transpose and summation
is implied over the repeated indices, i and j.

4.7.6 Finite-volume method

Consider a control volume bounded by three pairs of coordinate surfaces
where one coordinate is constant over each surface, as shown in Figure
4.1.1. Applying the divergence theorem in three dimensions for a tensor
field, T, over a volume enclosed by three pairs of coordinate surfaces,
we obtain

∫∫∫
∇ ·T dV (4.7.19)

and then
∫∫∫

∇ ·T dV =

∫∫
n ·T dS, (4.7.20)

where the surface integral is computed over the six faces of the control
volume and n is the outward unit normal vector.

Invoking expression (4.3.14) for the product of the normal vector
and surface area, we find that the surface integral over face A is

FA =

∫∫

A

g1 ·TJ dx2 dx3. (4.7.21)
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Substituting the pure covariant expansion T = T ij gi ⊗ gj, where
summation is implied over the repeated indices i and j, we obtain

FA =

∫∫

A

T ij (g1 · gi) gj J dx2 dx3 (4.7.22)

or

FA =

∫∫

A

T 1j gj J dx2 dx3. (4.7.23)

For example, in fluid mechanics, T can be the momentum tensor,
T = ρu⊗u, where ρ is the fluid density and u is the fluid velocity. In
that case, we find that

FA =

∫∫

A

u1 uj gj J dx2 dx3 =

∫∫

A

u1 uJ dx2 dx3. (4.7.24)

Similar expressions can be written for other faces. The surface integral
in (4.7.20) is the sum of the integrals over the six faces.

Exercise

4.7.1 Derive an expression for the pure covariant components of the
tensor product W = T · S.

4.8 Coordinate transformations

Consider a system of contravariant coordinates, (x1, x2, x3), and an-
other system of contravariant coordinates, (x̃1, x̃2, x̃3). The former
can be regarded as functions of the later and vice versa, in that a point
in space, x, is described by corresponding triplets.

4.8.1 Covariant base vector transformations

Using the chain rule, we find that that the covariant base vectors in
the second system are related to those in the first system by

g̃i ≡
∂x

∂x̃i
=

∂x

∂xj
∂xj

∂x̃i
=
∂xj

∂x̃i
gj = Hij gj, (4.8.1)
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where

Hij ≡
∂xj

∂x̃i
= g̃i · gj (4.8.2)

is a covariant base vector transformation matrix and summation is im-
plied over the repeated index, j.

Conversely, the covariant base vectors in the first system are related
to those in the second system by

gi ≡
∂x

∂xi
=

∂x

∂x̃j
∂x̃j

∂x̃i
=
∂x̃j

∂xi
g̃j = H−1

ij g̃j , (4.8.3)

where

H−1
ij ≡ ∂x̃j

∂xi
= gi · g̃j (4.8.4)

and a superscript −1 denotes the matrix transpose. We may confirm
that

HikH
−1
kj =

∂xk

∂x̃i
∂x̃j

∂xk
= δij , (4.8.5)

as discussed in Section 2.10.1. The transformation matrix H is not
necessarily orthogonal.

4.8.2 Contravariant base vector transformations

Working in a similar fashion, we find that

g̃i = Rij g
j, gi = R−1

ij g̃j, (4.8.6)

where

Rij = g̃i · gj R−1
ij = gi · g̃j . (4.8.7)

We may confirm that

RikR
−1
kj = δij , (4.8.8)

as discussed in Section 2.10.3.



D
R
A
F
T

244 Tensors Unravelled, C. Pozrikidis, © 2026

4.8.3 Relation between transformation matrices

Next, we compute

g̃i · g̃j = (Hik gk) · (Rjm gm) = HikRjmδkm = HikRjk = δij ,

(4.8.9)

which shows that

R = H−T, H ·RT = I, R ·HT = I. (4.8.10)

In summary, we have defined or derived the relations

g̃i · gj = Hij , gi · g̃j = H−1
ij ,

g̃i · gj = H−T
ij , gi · g̃j = HT

ij . (4.8.11)

4.8.4 Vector components

A vector, v, can be resolved in four ways as

v = vi gi = vi g
i = ṽi g̃i = ṽi g̃

i, (4.8.12)

where ṽi and ṽi are the contravariant and covariant vector components
in the second system denoted by a tilde. Performing projections, we
derive relations between the contravariant vector components,

ṽi = H−1
ji v

j, vi = Hjiṽ
j (4.8.13)

and corresponding relations for the covariant vector components,

ṽi = Hijvj , vi = H−1
ij ṽj . (4.8.14)

In terms of coordinate derivatives,

ṽi =
∂x̃i

∂xj
vj, vi =

∂xi

∂x̃j
ṽj (4.8.15)

and

ṽi =
∂xj

∂x̃i
vj , vi =

∂x̃j

∂xi
ṽj . (4.8.16)
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Relations (4.8.15) and (4.8.16) are the distinguishing properties of first-
order tensors representing physical vectors.

4.8.5 Two-index tensors

In the case of two-index tensors, we derive the relations

T̃ ij = H−1
pi H

−1
qj T

pq, T̃ij = HipHjq Tpq (4.8.17)

and

T̃ i
◦j = H−1

pi Hjq T
p
◦q, T̃ ◦j

i = HipH
−1
qj T

◦q
p . (4.8.18)

In terms of coordinate derivatives,

T̃ ij =
∂x̃i

∂xp
∂x̃j

∂xq
T pq, T̃ij =

∂xp

∂x̃i
∂xq

∂x̃j
Tpq (4.8.19)

and

T̃ i
◦j =

∂x̃i

∂xp
∂xq

∂x̃j
T p
◦q, T̃ ◦j

i =
∂xp

∂x̃i
∂x̃j

∂xq
T ◦q
p , (4.8.20)

where summation is implied over the repeated indices, p and q.

4.8.6 Transformation of metric coefficients

Applying the transformation rules (4.8.19) and (4.8.20) for the four
sets of metric coefficients, we obtain

g̃ij =
∂x̃i

∂xp
∂x̃j

∂xq
gpq, g̃ij =

∂xp

∂x̃i
∂xq

∂x̃j
gpq (4.8.21)

and

g̃i◦j =
∂x̃i

∂xp
∂xq

∂x̃j
gp◦q, g̃◦ji =

∂xp

∂x̃i
∂x̃j

∂xq
g◦qp , (4.8.22)

where

g̃i◦j = δij, gp◦q = δpq, g̃◦ji = δij , g◦qp = δpq. (4.8.23)
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4.8.7 Determinants

Based on the transformation rules (4.8.19) and (4.8.20), we derive the
following relations among the determinants:

det[T̃ ij ] = det[
∂x̃i

∂xp
] det[

∂x̃j

∂xq
] det[T pq],

det[T̃ij ] = det[
∂xp

∂x̃i
] det[

∂xq

∂x̃j
] det[Tpq],

det[T̃ i
◦j ] = det[

∂x̃i

∂xp
] det[

∂xq

∂x̃j
] det[T p

◦q], (4.8.24)

det[T̃ ◦j
i ] = det[

∂xp

∂x̃i
] det[

∂x̃j

∂xq
] det[T ◦q

p ],

where summation is implied over the repeated indices, p and q.

4.8.8 Determinant of a tensor

We can identify the tilde coordinates with the universal Cartesian co-
ordinates by setting

x̃1 = x, x̃2 = y, x̃3 = z, (4.8.25)

note that

det(T) = det[T̃ ij ] = det[T̃ij ] = det[T̃ i
◦j ] = det[T̃ ◦j

i ] (4.8.26)

and also

det[
∂x̃i

∂xp
] = J , det[

∂xp

∂x̃i
] =

1

J , (4.8.27)

where J 2 = g, and obtain

det(T) = g det[T ij] =
1

g
det[Tij ] = det[T ◦j

i ] = det[T i
◦j ]. (4.8.28)

These results are consistent with those derived in Section 2.12.6 in a
more general context.
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4.8.9 High-order tensor components

Working in a similar fashion, we find that tensor components in the
two coordinate systems transform according to the general rule

T̃ i1...im
j1...jn

=
∂x̃i1

∂xr1
· · · ∂x̃

im

∂xrm
∂xs1

∂x̃j1
· · · ∂x

sn

∂x̃jn
T r1...rm
s1...sn , (4.8.29)

where the ordering of the lower and upper indices is immaterial.

Exercise

4.8.1 Derive relation (4.8.29).

4.9 Christoffel symbols

The derivatives of the covariant base vectors, gi, with respect to the
contravariant coordinates, xj , are vectors themselves. We may define
the associated vectorial Christoffel symbols,

Γij ≡
∂ gi

∂xj
=

∂2x

∂xi∂xj
, (4.9.1)

which are zero only in the case of Cartesian or oblique rectilinear coor-
dinates. Note that Γij is a vector typeset in bold.

The vectorial Christofell symbols are the second derivatives of the
position with respect to contravariant coordinates. Consequently,

Γij = Γji, (4.9.2)

which shows that the symbols are symmetric with respect to the sub-
scripts i and j.

4.9.1 Christofell symbols of the second kind

The vectorial Christoffel symbols can be expressed in terms of the co-
variant base vectors as

∂ gi

∂xj
≡ Γk

ij gk, (4.9.3)
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where Γk
ij are the Christoffel symbols of the second kind and summation

is implied over the repeated index, k. Thus, by definition,

Γij ≡ Γk
ij gk, (4.9.4)

where summation is implied over the repeated index, k. The Christoffel
symbols of the second kind are identically zero in Cartesian or homo-
geneous oblique coordinates.

Projecting equation (4.9.3) onto gm, where m is a free index, using
the biorthonormality of the covariant and contravariant base vectors,
gk · gm = δkm, and then switching m to k, we obtain

Γk
ij =

∂ gi

∂xj
· gk, (4.9.5)

which defines the Christoffel symbols of the second kind in terms of
derivatives of the covariant base vectors with respect to contravariant
coordinates.

4.9.2 Symmetry

Equation (4.9.4) combined with the symmetry property Γij = Γji,
suggests that

Γk
ij = Γk

ji. (4.9.6)

As a further confirmation, we use the definition of the Christoffel symbol
stated in (4.9.5) to write

Γk
ij =

∂gi

∂xj
· gk =

∂2x

∂xi∂xj
· gk =

∂gj

∂xi
· gk = Γk

ji. (4.9.7)

Thus, the Christoffel symbols of the second kind are symmetric with
respect to the subscripts i and j.

4.9.3 Not a tensor

It should be noted that the Christoffel symbols of the second kind are
not components of a tensor. To emphasize this, the following notation
is sometimes used,

Γk
ij ≡

{
k
i j

}
. (4.9.8)
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4.9.4 Derivatives of contravariant base vectors

Using the biorthonormality of the covariant and contravariant base vec-
tors, gi · gk = δik, we find that

∂(gi · gk)

∂xj
= 0 (4.9.9)

for any trio of arbitrary indices, i, k, and j. Expanding the derivative,
we obtain

−∂ g
k

∂xj
· gi =

∂gi

∂xj
· gk ≡ Γk

ij, (4.9.10)

which implies that

∂ gk

∂xj
= −Γk

ij g
i, (4.9.11)

which is a companion of (4.9.3).

4.9.5 Christoffel symbols in terms of the metric tensor

To express the Christoffel symbols of the second kind in terms of the
components of the metric tensor, we compute the derivatives

∂gmi

∂xj
=
∂(gm · gi)

∂xj
= gm · ∂gi

∂xj
+ gi ·

∂gm

∂xj
, (4.9.12)

and thus obtain

∂gmi

∂xj
= Γk

ij gm · gk + Γk
mj gi · gk, (4.9.13)

yielding

∂gmi

∂xj
= Γk

ij gmk + Γk
mj gik, (4.9.14)

where summation is implied over the repeated index, k.

Next, we multiply equation (4.9.14) by gmp, where p is a free index,
sum over m, and recall that gmk g

mp = δkp to obtain

gmp ∂gmi

∂xj
= Γp

ij + Γk
mj gik g

mp. (4.9.15)
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Switching the indices i and j, we obtain the companion relationship

gmp ∂gmj

∂xi
= Γp

ij + Γk
mi gjk g

mp. (4.9.16)

Adding equations (4.9.15) and (4.9.16), we obtain

gmp ∂gmi

∂xj
+ gmp ∂gmj

∂xi
= 2Γp

ij + gmp
(
Γk
mj gik + Γk

mi gjk
)
. (4.9.17)

Combining equations (4.9.14) and (4.9.17), we find that the Christoffel
symbols of the second kind can be obtained from the contravariant and
covariant components of the metric tensor using the expression

Γp
ij =

1

2
gpm

(∂gmi

∂xj
+
∂gmj

∂xi
− ∂gij
∂xm

)
, (4.9.18)

where summation is implied over the repeated index, m. Equation
(4.9.18) is known as the Levi–Civita connection.

4.9.6 Coordinate transformations

Consider a system of curvilinear coordinates, (x1, x2, x3), and another
system of curvilinear coordinates, (x̃1, x̃2, x̃3). Departing from the sec-
ond transformation in (4.8.21), we write

∂g̃ij
∂x̃k

=
∂

∂x̃k
( ∂xp
∂x̃i

∂xq

∂x̃j
gpq

)
(4.9.19)

and then

∂g̃ij
∂x̃k

=
( ∂2xp

∂x̃k∂x̃i
∂xq

∂x̃j
+

∂2xp

∂x̃k∂x̃j
∂xq

∂x̃i
)
gpq + S, (4.9.20)

where

S ≡ ∂xp

∂x̃i
∂xq

∂x̃j
∂gpq
∂x̃k

=
∂xp

∂x̃i
∂xq

∂x̃j
∂xm

∂x̃k
∂gpq
∂xm

. (4.9.21)

The second expression for S arises by using the chain rule. Substituting
this expansion into the counterpart of (4.9.18) for the tilded variables
and simplifying, we obtain

Γ̃k
ij =

∂x̃k

∂xp
∂xr

∂x̃i
∂xs

∂x̃j
Γp
rs +

∂2xp

∂x̃i∂x̃j
∂x̃k

∂xp
, (4.9.22)
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where summation is implied over the repeated indices, p, r, s. This
formula will be derived in Section 5.5.7 using a different method.

Multiplying expression (4.9.22) by ∂xm/∂x̃k, recalling that

∂x̃k

∂xp
∂xm

∂x̃k
= δpm, (4.9.23)

as required for two inverse functions, and solving for the second term
on the right-hand side, we obtain the Christoffel formula

∂2xm

∂x̃i∂x̃j
=
∂xm

∂x̃k
Γ̃k
ij −

∂xr

∂x̃i
∂xs

∂x̃j
Γm
rs, (4.9.24)

where summation is implied over the repeated indices, k, r, s.

4.9.7 Alternative expression

Another expression for the Christoffel symbols can be derived. Recalling
that

∂xp

∂x̃i
∂x̃k

∂xp
= δik, (4.9.25)

differentiating with respect to x̃j , expanding the derivative of the prod-
uct, setting the derivative of the right-hand side to zero, and applying
the chain rule, we obtain

∂2xp

∂x̃ix̃j
∂x̃k

∂xp
= −∂x

p

∂x̃i
∂

∂x̃j

(∂x̃k
∂xp

)
= −∂x

p

∂x̃i
∂xq

∂x̃j
∂

∂xq

(∂x̃k
∂xp

)
(4.9.26)

and then

∂2xp

∂x̃ix̃j
∂x̃k

∂xp
= −∂x

p

∂x̃i
∂xr

∂x̃j
∂2x̃k

∂xp∂xr
. (4.9.27)

Substituting this property into the transformation rule (4.9.22), we
obtain

Γ̃k
ij =

∂x̃k

∂xp
∂xr

∂x̃i
∂xs

∂x̃j
Γp
rs −

∂xp

∂x̃i
∂xr

∂x̃j
∂2x̃k

∂xp∂xr
, (4.9.28)

where summation is implied over the repeated indices, p, r, s. This
formula will be derived in Section 5.5.8 using a different method.
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4.9.8 From Cartesian to curvilinear

Now identifying the untilded coordinates with Cartesian coordinates
indicated by Greek subscripts, and setting the corresponding Christoffel
symbols to zero, we find that

Γ̃k
ij =

∂2xα
∂x̃i∂x̃j

∂x̃k

∂xα
= −∂xα

∂x̃i
∂xβ
∂x̃j

∂2x̃k

∂xα∂xβ
, (4.9.29)

where summation is implied over α and β in the range 1, 2, 3.

4.9.9 Christoffel symbols of the first kind

We recall the expression for the Christoffel symbols of the second kind
given in (4.9.18). Multiplying this equation by gqp, where q is a free
index, and summing over p, we obtain the Christoffel symbol of the
first kind,

Γq;ij ≡ gqp Γ
p
ij . (4.9.30)

This equation is deceptive in that Γq;ij might falsely appear as the pure
covariant counterpart of Γp

ij .

Explicitly, the Christoffel symbol of the first kind is given by

Γq;ij =
1

2
gpmgqp

(∂gmi

∂xj
+
∂gmj

∂xi
− ∂gij
∂xm

)
. (4.9.31)

Recalling that gpmgqp = δmq, we obtain

Γq;ij ≡ gqk Γ
p
ij =

1

2

(∂gqi
∂xj

+
∂gqj
∂xi

− ∂gij
∂xq

)
. (4.9.32)

The preceding expressions show that the Christoffel symbol of the first
kind is symmetric with respect to the indices i and j,

Γq;ij = Γq;ji. (4.9.33)

Note the semi-colon (;) notation.

Using expression (4.9.32), we find that equation (4.9.18) becomes

Γp
ij = gpm Γm;ij, (4.9.34)
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which provides us with a method of figuratively raising the subscript of
the Christoffel symbols of the second kind.

Combining equation (4.9.30) with Ricci’s lemma stated in (5.6.19),
repeated below for convenience,

∂gik
∂xj

= gkp Γ
p
ij + gip Γ

p
jk, (4.9.35)

we obtain

∂gik
∂xj

= Γk;ij + Γi;kj. (4.9.36)

In practice, the Christoffel symbols of the first kind provide us with
a venue for obtaining the Christoffel symbols of the second kind in
terms of the components of the metric tensor.

Exercises

4.9.1 Compute the Christofell symbols of the first kind on cylindrical
polar coordinates.

4.9.2 Derive (4.9.22).

4.10 Cylindrical polar coordinates

An arbitrary point in space can be identified by its cylindrical polar
coordinates, (ϕ, x, σ), where ϕ is the azimuthal angle, x is the axial
position, and σ is the distance from the x axis as illustrated in Figure
4.10.1. The triplet, (ϕ, x, σ), comprise orthogonal curvilinear coordi-
nates

x1 = ϕ, x2 = x, x3 = σ, (4.10.1)

where 0 ≤ ϕ < 2π by convention, x is arbitrary, and σ ≥ 0. Cyclic
permutation of these variables may also be employed.

The Cartesian coordinates of the position vector are

y = σ cosϕ, z = σ sinϕ. (4.10.2)
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Figure 4.10.1 Illustration of cylindrical polar coordinates, (ϕ, x, σ),
defined with respect to Cartesian coordinates, (x, y, z), where σ
is the distance from the x axis.

These relations can be inverted readily to yield

σ =
√
y2 + z2, ϕ = arccos

y

σ
, (4.10.3)

for any x.

The base unit vectors are

eϕ =




0
− sinϕ
cosϕ


 , ex =




1
0
0


 , eσ =




0
cosϕ
sinϕ


 , (4.10.4)

the covariant base vectors are

gϕ = σ eϕ, gx = ex, gσ = eσ, (4.10.5)

and the contravariant base vectors are

gϕ =
1

σ
eϕ, gx = ex, gσ = eσ. (4.10.6)

Because the cylindrical polar coordinates are orthogonal, the contravari-
ant base vectors are parallel to the corresponding covariant vectors.
Note that gϕ · gϕ = 1, as required.
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4.10.1 Metric coefficients

All contravariant and covariant metric coefficients are zero, gij = 0 and
gij = 0, except for the diagonal coefficients

gϕϕ = σ2, gxx = 1, gσσ = 1, (4.10.7)

and

gϕϕ =
1

σ2
, gxx = 1, gσσ = 1. (4.10.8)

The non-vanishing of the diagonal components is typical of orthogonal
coordinates. Note that gii = 1/gii, where summation is not implied
over the repeated index, i.

4.10.2 Christoffel symbols

Using (4.9.5), we compute the Christoffel symbols of the second kind

Γϕ
σϕ = Γϕ

ϕσ =
∂gσ

∂ϕ
· gϕ =




0
− sinϕ
cosϕ


 · 1

σ




0
− sinϕ
cosϕ


 =

1

σ
(4.10.9)

and

Γσ
ϕϕ =

∂gϕ

∂ϕ
· gσ = σ




0
− cosϕ
− sinϕ


 ·




0
cosϕ
sinϕ


 = −σ. (4.10.10)

Alternatively, expressions (4.10.10) and (4.10.10) can be derived from
the transformation rule stated in (4.9.29). All other Christoffel symbols
of the second kind turn out to be zero.

Exercises

4.10.1 Confirm that Γϕ
σϕ = Γϕ

ϕσ.

4.10.2 Derive expressions (4.10.10) and (4.10.10) from the transfor-
mation rule stated in (4.9.29).
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Figure 4.11.1 Illustration of spherical polar coordinates, (r, θ, ϕ),
defined with respect to the Cartesian coordinates, (x, y, z), and
cylindrical polar coordinates, (x, σ, ϕ), where r is the distance
from the origin, θ is the meridional angle, ϕ is the azimuthal
angle, and σ is the distance from the x axis.

4.11 Spherical polar coordinates

An arbitrary point in space can be identified by its spherical polar co-
ordinates, (θ, ϕ, r), where r is the distance from the origin, θ is the
meridional angle, and ϕ is the azimuthal angle, as illustrated in Figure
4.11.1. The triplet, (θ, ϕ, r), comprise orthogonal curvilinear coordi-
nates,

x1 = θ, x2 = ϕ, x3 = r, (4.11.1)

where 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, and r ≥ 0.

The Cartesian coordinates of the position vector are

x = r cos θ, y = r sin θ cosϕ, z = r sin θ sinϕ. (4.11.2)

Inverting these relations, we obtain the coordinates r, θ, and φ in terms
of x, y, and z,

r =
√
x2 + y2 + z2, θ = arccos

x

r
, ϕ = arccos

y

σ
. (4.11.3)



D
R
A
F
T

4.11 Spherical polar coordinates 257

The base unit vectors are

eθ =




− sin θ
cos θ cosϕ
cos θ sinϕ


 , eϕ =




0
− sinϕ
cosϕ


 ,

er =




cos θ
sin θ cosϕ
sin θ sinϕ


 . (4.11.4)

The corresponding covariant base vectors are

gθ =
∂x

∂θ
= r eθ, gϕ =

∂x

∂ϕ
= r sin θ eϕ,

gr =
∂x

∂r
= er. (4.11.5)

The associated contravariant vectors are given by

gθ =
1

r
eθ, gϕ =

1

r sin θ
eϕ. gr = er. (4.11.6)

Because the spherical polar coordinates are orthogonal, the contravari-
ant base vectors are parallel to the corresponding covariant vectors.

4.11.1 Metric coefficients

All contravariant and covariant metric coefficients are zero, gij = 0 and
gij = 0, except for the diagonal components

gθθ = r2, gϕϕ = r2 sin2 θ, grr = 1, (4.11.7)

and

gθθ =
1

r2
, gϕϕ =

1

r2 sin2 θ
, grr = 1. (4.11.8)

The non-vanishing of the diagonal components is typical of orthogonal
coordinates. Note that gii = 1/gii, where summation is not implied
over the repeated index, i. The volume metric coefficient is given by
J = r2 sin θ.
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4.11.2 Christoffel symbols

Using (4.9.5), we find that

Γϕ
rϕ =

∂ gr

∂ϕ
· gϕ =




0
− sin θ sinϕ
sin θ cosϕ


 · 1

r sin θ




0
− sinϕ
cosϕ


 =

1

r
.

(4.11.9)

Working in a similar fashion , we find that all other Christoffel symbols
of the second kind are zero, except for the following:

Γϕ
rϕ = Γϕ

ϕr = Γθ
rθ = Γθ

θr =
1

r
,

Γϕ
θϕ = Γϕ

ϕθ = cot θ, Γθ
ϕϕ = − sin θ cos θ, (4.11.10)

Γr
θθ = −r, Γr

ϕϕ = −r sin2 θ.

Note that the symmetry property with respect to the indices of the
Christoffel symbols is satisfied.

Exercise

4.11.1 Derive the non-zero Christoffel symbols shown in (4.11.10).

4.12 Helical coordinates

Helical coordinates are employed when the structure of a scalar or vector
field of interest is invariant along a helical path. Examples include fluid
flow in a tube with helical corrugations, flow through a tube with a
helical centerline, and flow induced by a helical line vortex. In these
applications, it is convenient to identity a point in space by the non-
orthogonal helical coordinates, (ϕ̂, x̂, σ̂), defined in Figure 4.12.1.

4.12.1 Relation to cylindrical polar coordinates

The helical coordinates are related to the cylindrical polar coordinates,
(x, σ, ϕ), by

ϕ = ϕ̂+ α x̂, x = x̂, σ = σ̂, (4.12.1)
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Figure 4.12.1 Illustration of helical coordinates, (ϕ̂, x̂, σ̂), in rela-
tion to companion Cartesian and cylindrical polar coordinates,
(x, σ, ϕ).

and to the associated Cartesian coordinates by

x = x̂, y = σ̂ cos(ϕ̂+ α x̂), z = σ̂ sin(ϕ̂+ α x̂),(4.12.2)

where α ≡ 2π/L is the helical wave number and L is the helical pitch.
In the limit of infinite pitch, α → 0, the helical coordinates reduce to
cylindrical polar coordinates. The variable ϕ̂ represents the azimuthal
angle in the yz plane at a certain axial position, x.

In problems with helical symmetry, the partial derivative of a variable
of interest, f , with respect to x̂ is zero, so that f(σ̂, ϕ̂). To conform
with standard notation, we set

x1 = ϕ̂, x2 = x̂, x3 = σ̂. (4.12.3)

The first base vector is given by

g1 ≡
∂x

∂x1
=
∂x

∂ϕ̂
= σ̂




0
− sin(ϕ̂+ α x̂)
cos(ϕ̂+ α x̂)


 , (4.12.4)

the second base vector is given by

g2 ≡
∂x

∂x2
=
∂x

∂x̂
=




1
−ασ̂ sin(ϕ̂+ α x̂)
ασ̂ cos(ϕ̂+ α x̂)


 , (4.12.5)
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and the third base vector is given by

g3 ≡
∂x

∂x3
=
∂x

∂σ̂
=




0
cos(ϕ̂+ α x̂)
sin(ϕ̂+ α x̂)


 . (4.12.6)

4.12.2 Metric coefficients

The matrix of covariant metric coefficients is given by

g ≡
[
gij

]
=




σ̂2 α σ̂2 0
α σ̂2 1 + α2 σ̂2 0
0 0 1


 . (4.12.7)

The matrix of contravariant metric coefficients is the inverse of the
matrix of covariant metric coefficients,

β ≡
[
gij

]
=




1
σ̂2 + α2 −α 0

−α 1 0
0 0 1


 . (4.12.8)

The presence of nondiagonal elements indicates that the helical coor-
dinates are orthogonal only in the limit of infinite pitch, α→ 0.

4.12.3 Christoffel symbols

The only non-zero Christoffel symbols are the following:

Γ3
32 =

1

σ̂
, Γ3

12 =
α

σ̂
, Γ2

33 = −σ̂, Γ2
13 = −α σ̂,

Γ3
23 =

1

σ̂
, Γ2

31 = −α σ̂, Γ2
11 = −α2 σ̂, Γ3

21 =
α

σ̂
.

(4.12.9)

4.12.4 Alternative helical coordinates

Alternative helical coordinates (ϕ̃, x̃, σ̃) can be defined such that the
cylindrical polar coordinates are ϕ = ϕ̃, x = x̃+ 1

α
ϕ̃, and σ = σ̃. The

associated Cartesian coordinates are

x = x̃+
1

α
ϕ̃, y = σ̃ cos ϕ̃, z = σ̃ sin ϕ̃. (4.12.10)
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The base vectors and metric coefficients can be computed by straight-
forward differentiation.

Exercises

4.12.1 Compute the covariant base vectors corresponding to (4.12.10).

4.12.2 Confirm that the matrix given in (4.12.7) is the inverse of that
given in (4.12.8).

4.13 Covariant derivatives of vector components

The derivative of a vector field, v, with respect to a contravariant co-
ordinate, xj , is another vector field that can be expressed in terms of
properly defined covariant derivatives of the contravariant or covari-
ant vector components, vi or vi, in two combinations. The covariant
derivatives are defined in terms of the Christoffel symbols introduced
in Section 4.8.

4.13.1 Covariant derivative of contravariant vector components

We may expand v = vigi and take the derivative with respect to the
jth contravariant coordinate,

∂v

∂xj
=
∂(vigi)

∂xj
=
∂vi

∂xj
gi + vi

∂gi

∂xj
, (4.13.1)

where summation is implied over the repeated index, i. Expressing the
derivative ∂gi/∂x

j in terms of the Christoffel symbols of the second
kind by way of the definition (4.9.3), we obtain

∂v

∂xj
=
∂vi

∂xj
gi + vi Γk

ij gk. (4.13.2)

Renaming the indices in the second term on the right-hand side and
rearranging, we obtain

∂v

∂xj
=

( ∂vi
∂xj

+ Γi
jkv

k
)
gi. (4.13.3)
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The expression inside the parentheses on the right-hand side is the
covariant derivative of a contravariant vector component, denoted by
a comma,

∂v

∂xj
= vi,j gi, (4.13.4)

where summation is implied over the repeated index, i. By definition,

vi,j ≡
∂vi

∂xj
+ Γi

jk v
k. (4.13.5)

Other non-comma notations for the covariant derivative, including a
vertical dash, are employed in the literature. If the Christofell symbols
are all zero, the covariant derivative reduces to the familiar partial
derivative.

4.13.2 Covariant derivative of covariant vector components

The corresponding representation of the derivative under consideration
in terms of contravariant base vectors is

∂v

∂xj
= vi,j g

i, (4.13.6)

where vi,j is the covariant derivative of the covariant vector compo-
nents. Using the rule for lowering an index, we find that

vi,j = gimv
m
,j = gim

(∂vm
∂xj

+ Γm
jk v

k
)
. (4.13.7)

This expression can be simplified by manipulating the first product on
the right-hand side and mutually renaming the indices k and m, to
obtain

vi,j =
∂(vmgim)

∂xj
−
(∂gim
∂xj

− Γk
jm gik

)
vm. (4.13.8)

Using expression (4.9.14), repeated below for convenience,

∂gmi

∂xj
= Γk

ij gmk + Γk
mj gik, (4.13.9)
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and simplifying, we obtain

vi,j =
∂vi
∂xj

− Γk
ij gmk v

m. (4.13.10)

Simplifying further, we derive an expression for the covariant derivative
of the covariant vector components,

vi,j ≡
∂vi
∂xj

− Γk
ji vk. (4.13.11)

The expression differs from that shown in (4.13.5).

Alternatively, expression (4.13.11) can be derived by expanding

∂v

∂xj
=
∂(vig

i)

∂xj
=
∂vi
∂xj

gi +
∂gi

∂xj
vi, (4.13.12)

and using (4.9.11) to write

∂ gi

∂xj
= −Γi

kj g
k. (4.13.13)

Renaming the indices we obtain the expression for the covariant deriva-
tive shown in (4.13.11).

Exercise

4.13.1 Discuss the notion of a contravariant derivative, that is, a
derivative with respect to xj , and explain its absence from the liter-
ature.

4.14 Covariant derivatives of tensor components

The derivative of a tensor field, T, with respect to a contravariant
coordinate, xj , is another tensor field that can be expressed in terms of
a properly defined covariant derivative of the contravariant, covariant,
or mixed tensor components in four combinations.
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4.14.1 Covariant derivative of contravariant tensor components

An arbitrary tensor, T, admits the four-fold expansion

T = T ij gi ⊗ gj = T i
◦j gi ⊗ gj

= T ◦j
i gi ⊗ gj = Tij g

i ⊗ gj. (4.14.1)

Taking the derivative of the first expansion with respect to the kth
contravariant coordinate, we find that

∂T

∂xk
=
∂T ij

∂xk
gi ⊗ gj + T ij ∂gi

∂xk
⊗ gj + T ij gi ⊗

∂gj

∂xk
. (4.14.2)

The last two derivatives, ∂gi/∂x
k and ∂gj/∂x

k, can be expressed in
terms of the Christoffel symbols of the second kind using the definition
(4.9.3),

∂ gi

∂xk
≡ Γm

ik gm,
∂ gj

∂xk
≡ Γm

jk gm. (4.14.3)

Substituting these expressions into (5.6.5), we obtain

∂T

∂xk
=
∂T ij

∂xk
gi ⊗ gj + T ij Γm

ik gm ⊗ gj + T ij Γm
jk gi ⊗ gm.(4.14.4)

Next, we mutually rename the indices i and m in the penultimate term
and the indices j and m in the last term on the right-hand side, and
obtain

∂T

∂xk
=
∂T ij

∂xk
gi ⊗ gj + Tmj Γi

mk gi ⊗ gj + T im Γj
mk gi ⊗ gj . (4.14.5)

We have found that

∂T

∂xk
= T ij

,k gi ⊗ gj , (4.14.6)

where

T ij
,k ≡ ∂T ij

∂xk
+ Γi

mk T
mj + Γj

mk T
im (4.14.7)

is the covariant derivative of the contravariant components of T; sum-
mation is implied over the repeated index, m. If the Christofell sym-
bols are all zero, the covariant derivative reduces to the familiar partial
derivative.
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4.14.2 Covariant derivatives of covariant components

Working as previously in this section with the last expression in (4.14.1),
we find that

∂T

∂xk
= Tij,k g

i ⊗ gj , (4.14.8)

where

Tij,k =
∂Tij
∂xk

− Γm
ik Tmj − Γm

kj Tim (4.14.9)

is the covariant derivative of the covariant components.

4.14.3 Covariant derivatives of con-cov components

Working as previously in this section with the second expression in
(4.14.1), we find that

∂T

∂xk
= T i

◦j,k gi ⊗ gj, (4.14.10)

where

T i
◦j,k =

∂T i
◦j

∂xk
+ Γi

mk T
m
◦j − Γm

jk T
i
◦m (4.14.11)

is a covariant derivative of mixed components.

4.14.4 Covariant derivatives of cov-con components

Working as previously in this section with the third expression in (5.6.4),
we find that

∂T

∂xk
= T ◦j

i,k g
i ⊗ gj , (4.14.12)

where

T ◦j
i,k =

∂T ◦j
i

∂xk
− Γm

ik T
◦j
m + Γj

km T
◦m
i (4.14.13)

is yet another covariant derivative of mixed components.
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4.14.5 Mnemonic rule

Note that the sign of the terms involving the Christoffel symbols on
the right-hand sides of (4.14.7), (4.14.9), (4.14.11), and (4.14.13) is
positive when m appears as a superscript and negative when m appears
as a subscript on T .

Exercise

4.14.1 Derive expression (4.14.13).

4.15 Alternating tensor

Previously in this chapter, we discussed two-index tensors defined in
terms of dyadic products. Three- and higher-index tensors are defined
in a similar fashion.

The alternating tensor is a three-index tensor described by an eight-
fold expansion,

ξ = ξijk gi ⊗ gj ⊗ gk = ξ◦jki gi ⊗ gj ⊗ gk = · · ·
= ξi◦jk gi ⊗ gj ⊗ gk = ξijk g

i ⊗ gj ⊗ gk. (4.15.1)

The components of the alternating tensor are given by

ξijk = [ gi, gj, gk ], ξ◦jki = [ gi, g
j, gk ], . . . ,

ξi◦jk = [ gi, gj , gk ], ξijk = [ gi, gj, gk ], (4.15.2)

where

[u,v,w] ≡ (u× v) ·w (4.15.3)

is the tripled mixed product representing the volume of the paral-
lelepiped whose edges are three arbitrary vectors, u, v, and w. Cyclic
permutation of u, v, w, preserves the triple mixed product. Non-cyclic
permutation preserves the magnitude but changes the sign.
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4.15.1 Contravariant and covariant components

The pure contravariant and pure covariant components of the alternat-
ing tensor are given by

ξijk =
1

J ǫijk, ξijk = J ǫijk, (4.15.4)

where J is the Jacobian metric and ǫijk is the Levi–Civita symbol.
Consequently,

ξ =
1

J ǫijk gi ⊗ gj ⊗ gk = J ǫijk g
i ⊗ gj ⊗ gk. (4.15.5)

4.15.2 Cross product

The cross product of two vectors, v and u, is given by

w ≡ v × u = ξ : (v ⊗ u), (4.15.6)

as discussed in Section 2.13.

Exercise

4.15.1 Prove (4.15.6).
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Chapter 5

Vector and tensor calculus

Expressions for partial derivatives, directional derivatives, the diver-
gence, the curl, the gradient, and other differential operators acting on
scalar, vector, and tensor fields can be derived in terms of the Christoffel
symbols. These expressions may then be substituted into the equations
of mathematical physics to provide us with governing equations in non-
Cartesian, rectilinear or curvilinear coordinates.

While the general procedures are straightforward, subtleties arise
in the case of moving or convected coordinates employed when the
governing equations involve an intrinsic velocity field. The advantage
of using convected coordinates will be demonstrated and expressions
for the Green’s function of the convection–diffusion equation will be
derived.

5.1 Gradient of a scalar function

Consider a scalar function of position, f(x). The gradient of this func-
tion, denoted by ∇f , is a vector pointing in the direction of maximum
rate of change of f with respect to directional arc length. For example,
if f(x) is a temperature field, then ∇f is aligned in the direction when
the temperature increases the most at a point.

5.1.1 Directional derivative

The projection of the gradient, ∇f onto a unit vector, e, is the rate
of change of f with respect to arc length, ℓ, measured in the direction
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of the unit vector,

e ·∇f = ex
∂f

∂x
+ ey

∂f

∂y
+ ez

∂f

∂z
(5.1.1)

or

e ·∇f =
∂f

∂ℓ
= cos θ |∇f |, (5.1.2)

where e2x + e2y + e2z = 1, and θ is the angle subtended between e and
∇f . We conclude that e · ∇f is maximum when θ = 0, minimum
when θ = π, and zero when θ = 1

2
π.

If a is an arbitrary vector, then

a ·∇f = ax
∂f

∂x
+ ay

∂f

∂y
+ az

∂f

∂z
= cos θ |a| |∇f |, (5.1.3)

where |a|2 = a2x + a2y + a2z = 1 and θ is the angle subtended between
a and ∇f .

5.1.2 Gradient in curvilinear coordinates

The projection of ∇f onto a covariant base vector, gi, provides us
with the rate of change with respect to the associated contravariant
coordinate, xi,

gi ·∇f =
∂x

∂xi
·∇f =

∂f

∂xi
. (5.1.4)

Consequently,

(∇f)i =
∂f

∂xi
, ∇f =

∂f

∂xi
gi. (5.1.5)

To signify that the derivatives with respect to contravariant coordi-
nates, xi, provide us with the covariant components of the gradient,
the gradient is sometimes called a covariant vector.

The directional derivative is given by

e ·∇f = ei
∂f

∂xi
, (5.1.6)
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where e is a unit vector. If a is an arbitrary vector, then

a ·∇f = ai
∂f

∂xi
, (5.1.7)

where summation is implied over the repeated index, i.

Using the rule for raising indices, we find that the contravariant
components of the gradient are given by

(∇f)i = gik (∇f)k = gik
∂f

∂xk
. (5.1.8)

Note that these components are not associated with derivatives with
respect to covariant coordinates, xi.

Exercise

5.1.1 Confirm that ∇f points in the direction of maximum rate of
change of f for the function f = x+ y + z.

5.2 Gradient operator

Referring to equation (5.1.5), we express the gradient operator in the
form

∇ = gi ∂

∂xi
, (5.2.1)

where summation is implied over the repeated index, i.

5.2.1 Operation on a vector field

For any vector field, u, we may write

∇ v = gi ∂v

∂xi
, (5.2.2)

where denotes a differential operation such as the inner product (·),
the cross product (×), or the tensor product (⊗).
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Expressing v in terms of its contravariant or covariant components,
we obtain two combinations,

∇ u = gi ∂

∂xi
(vj gj) = gi ∂

∂xi
(vj g

j), (5.2.3)

where summation is implied over the repeated indices, i and j. To
derive specific expressions, we expand the derivatives of the products,
carry out the operations, and express the derivatives of the base
vectors, gj or gj , in terms of the Christoffel symbols of the second
kind.

Departing from the first expression in (5.2.3), we obtain

∇ u = gi gj
∂vj

∂xi
+ vj gi ∂gj

∂xi
. (5.2.4)

Expressing the derivative ∂gj/∂x
i in terms of the Christoffel symbols

of the second kind by way of (4.9.3), repeated below for convenience,

∂ gj

∂xi
≡ Γk

ij gk, (5.2.5)

we obtain

∇ v = gi gj
∂vj

∂xi
+ vj Γk

ji g
i gk, (5.2.6)

which can be restated as

∇ v = gi gk

( ∂vk
∂xi

+ Γk
jiv

j
)
. (5.2.7)

Renaming the indices, we obtain

∇ v = gj gi

( ∂vi
∂xj

+ Γi
kjv

k
)
. (5.2.8)

Now invoking the definition of the covariant derivative of the contravari-
ant vector components from (4.13.5),

vi,j ≡
∂vi

∂xj
+ Γi

jk v
k, (5.2.9)
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we obtain

∇ v = vi,j g
j gi. (5.2.10)

Departing from the second expression in (5.2.3) and working in a
similar fashion, we obtain

∇ v = vi,j g
j gi, (5.2.11)

where

vi,j ≡
∂vi
∂xj

− Γk
ji vk (5.2.12)

is the covariant derivative of the covariant vector components defined
in (4.13.11).

In Sections 5.3–5.5, we will essentially derive and apply equations
(5.2.10) and (5.2.11) for the inner product, the outer product, and the
tensor product.

5.2.2 Operation on a tensor field

For any tensor field, T, we may write

∇ T = gi ∂T

∂xi
. (5.2.13)

Further manipulation involves introducing expansions for T on the
right-hand side and expressing the final result in terms of covariant
derivatives of the tensor components defined in Section 4.13. The pro-
cess will be illustrated in Sections 5.8 and 5.9 for the gradient and the
divergence of a tensor field.

Exercise

5.2.1 Derive expression (5.2.11).
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5.3 Divergence of a vector field

The divergence of a vector field, v, is a scalar defined by the inner
product of the gradient operator ∇ and v, where the inner product is
interpreted as an operation, ∇ · v. We find that

∇ · u = gi · ∂

∂xi
(vj gj) = gi · ∂

∂xi
(vj g

j), (5.3.1)

where summation is implied over the repeated indices, i and j.

Expanding the derivative in the first expression in (5.3.1), we obtain

∇ · v = gi · gj
∂vj

∂xi
+ vj gi · ∂ gj

∂xi
. (5.3.2)

Now we recall that gi · gj = δij and express the last derivative on the
right-hand side in terms of the Christoffel symbols of the second kind
using the definition (4.9.3), repeated below for convenience,

∂ gj

∂xi
≡ Γk

ij gk, (5.3.3)

to obtain

∇ · v =
∂vi

∂xi
+ Γk

ij v
j gi · gk. (5.3.4)

Recalling once more that gi · gk = δik, we obtain

∇ · v =
∂vi

∂xi
+ Γi

ij v
j, (5.3.5)

where summation is implied over the repeated indices, i and j. We see
that the divergence of v is not simply the sum of the derivatives of
the contravariant components, vi, with respect to contravariant coor-
dinates, xi.

In terms of the covariant derivative of the contravariant components
introduced in (4.13.5),

∇ · v = vi,i, (5.3.6)
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where summation is implied over the repeated index, i.

5.3.1 Divergence in terms of metric coefficients

Referring to (4.9.18), repeated below for convenience,

Γp
ij =

1

2
gpm

(∂gmi

∂xj
+
∂gmj

∂xi
− ∂gij
∂xm

)
, (5.3.7)

we find that the coefficient of vj in the second term on the right-hand
side of (5.3.5) is given by

Γi
ij =

1

2
gim

∂gmi

∂xj
, (5.3.8)

where summation is implied over the repeated index, m. In Section
5.6, we will prove that

Γi
ij =

1

J
∂J
∂xj

=
1

2

1

g

∂g

∂xj
, (5.3.9)

as shown in (5.6.22), where J =
√
g and g is the determinant of the

matrix of covariant coefficients, g. Consequently,

∇ · v =
∂vi

∂xi
+

1

J
∂J
∂xi

vi =
1

J
∂(J vi)
∂xi

(5.3.10)

and

∇ · v =
∂vi

∂xi
+

1

2

1

g

∂g

∂xi
vi. (5.3.11)

The second term on the right-hand side of the last equation does not
appear when J , and thus g, is spatially uniform, as in the case of
oblique rectilinear coordinates.

5.3.2 Laplacian of a scalar field

The Laplacian of a scalar field is the divergence of the gradient.

∇2f ≡ ∇ ·∇f (5.3.12)
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Applying expression (5.3.10) with v = ∇f and using expression (5.1.8)
for the contravariant components of the gradient,

∇2f =
1

J
∂

∂xi

(
J gki

∂f

∂xk

)
, (5.3.13)

as shown previously in (3.5.27). Note that the covariant metric coeffi-
cients are involved in this expression. We recall that J =

√
g, where

g is the determinant of the matrix of covariant metric components, g.

Exercise

5.3.1 Show that∇·v = gij vi,j , where a comma indicates the covariant
derivative.

5.4 Curl of a vector field

The curl of a vector field, v, is described by the dual expansion

ω ≡ ∇× v = gj × ∂

∂xj
(vi gi) = gj × ∂

∂xj
(vi g

i), (5.4.1)

where × denotes the outer (cross) vector product, and summation is
implied over the repeated index, i.

Expanding the derivative in the first expression in (5.4.1) into two
contributions, we obtain

ω =
∂vi

∂xj
gj × gi + vi gj × ∂gi

∂xj
. (5.4.2)

Now we express the last derivative on the right-hand side in terms of
the Christoffel symbols of the second kind to obtain

ω =
∂vi

∂xj
gj × gi + Γk

ij v
i gj × gk. (5.4.3)

Renaming the repeated index i in the first expression on the right-hand
side to k, and grouping the two terms we obtain

ω = vk,j g
j × gk, (5.4.4)
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where summation is implied over the repeated indices, j and k and

vk,j =
∂uk

∂xj
+ ui Γk

ij (5.4.5)

is the covariant derivative of the contravariant vector components

Alternatively, we depart from the second expression in (5.4.1) and
work in a similar fashion to obtain

ω = vk,j g
j × gk, (5.4.6)

where

vk,j ≡
∂vk
∂xj

− Γi
jk vi (5.4.7)

is the covariant derivative of the covariant vector components defined
in (4.13.11).

In three dimensions, we use equations (4.1.14), repeated below for
convenience,

g1 = J g2 × g3, g2 = J g3 × g1, g3 = J g1 × g2, (5.4.8)

and obtain

ω =
1

J
(
(v3,2 − v2,3) g1 + (v1,3 − v3,1) g2 + (v2,1 − v1,2) g3

)
, (5.4.9)

which shows that the contravariant components of the vorticity are
given by

ω1 =
1

J (v3,2 − v2,3), ω2 =
1

J (v1,3 − v3,1),

ω3 =
1

J (v2,1 − v1,2). (5.4.10)

In compact notation,

ωi =
1

J ǫijk vk,j, ω =
1

J ǫijk vk,j gi, (5.4.11)

where ǫijk is the Levi–Civita symbol.
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Exercise

5.4.1 Confirm that expression (5.4.4) is consistent that in Cartesian
coordinates, ωα = ǫαβγ ∂uγ/∂xβ , where Greek indices denote Cartesian
coordinates.

5.5 Gradient of a vector field

The gradient of a vector field, v, is a tensor field denoted by

L ≡ ∇v ≡ ∇⊗ v, (5.5.1)

where ⊗ is the tensor product. The left projection of a unit vector, e,
onto L is the rate of change of v with respect to arc length measured
in the direction of the unit vector, ℓ,

e ·∇v = ex
∂v

∂x
+ ey

∂v

∂y
+ ez

∂v

∂z
=
∂v

∂ℓ
, (5.5.2)

where e2x + e2y + e2z = 1.

Using expression (5.2.2), we find that

L = gj ⊗ ∂

∂xj
(vi gi) = gj ⊗ ∂

∂xj
(vi g

i), (5.5.3)

where summation is implied over the repeated indices, i and j.

5.5.1 Contravariant–covariant base

Expanding the derivative with respect to xj in the first expression of
(5.5.3), we obtain

L =
∂vi

∂xj
gj ⊗ gi + vi gj ⊗ ∂gi

∂xj
. (5.5.4)

Next, we express the last derivative on the right-hand side in terms of
the Christoffel symbols, and obtain

L =
∂vi

∂xj
gj ⊗ gi + Γk

ij v
i gj ⊗ gk. (5.5.5)
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Renaming the index i in the first term on the right-hand side to k, and
rearranging, we obtain

∇v = L◦k
j gj ⊗ gk, (5.5.6)

where

L◦k
j = vk,j ≡

∂vk

∂xj
+ Γk

ij v
i (5.5.7)

is a covariant derivative. We have found that

L ≡ ∇v = vk,j g
j ⊗ gk, (5.5.8)

where summation is implied over the repeated indices, j and k.

5.5.2 Contravariant base

The covariant representation of the gradient is

L = Ljk g
j ⊗ gk, (5.5.9)

where

Ljk = gkmL
◦m
j = gkm v

m
,j = vk,j (5.5.10)

and

vk,j = gkm
( ∂vm
∂xj

+ Γm
ij v

i
)
=
∂vk
∂xj

− Γi
jk vi (5.5.11)

is a covariant derivative, as discussed in Section 4.9.5. We have found
that

L ≡ ∇v = vk,j g
j ⊗ gk, (5.5.12)

where summation is implied over the repeated indices, j and k.

5.5.3 Divergence of a vector field

We recall that

trace(gj ⊗ gk) = gj · gk = δjk, (5.5.13)
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and find from (5.5.8) that the divergence of v is given by

∇ · v = trace(∇v) = vi,i, (5.5.14)

where summation is implied over the repeated index, i. This expression
is the counterpart of a corresponding expression in Cartesian coordi-
nates indicated by Greek subscripts, ∇ · v = ∂vα/∂xα.

We recall that

trace(gj ⊗ gk) = gj · gk = gjk, (5.5.15)

and find from (5.5.9) that the divergence of u is also given by

∇ · u = trace(∇u) = gjkuk,j, (5.5.16)

where summation is implied over the repeated indices, j and k.

5.5.4 Directional derivative

Referring to (5.5.8), we introduce an arbitrary vector, a, we find that

a ·∇v = ajvk,j gk. (5.5.17)

We may write a = |a| ea, where ea is the unit vector in the direction
of a, and obtain the directional derivative,

ea ·∇v =
1

|a| a
jvk,j gk. (5.5.18)

The contravariant components of a and v are involved in this expres-
sion.

5.5.5 Symmetric and antisymmetric parts

The gradient of a vector field, ∇v, can be resolved into a symmetric
part given by

E =
1

2
vk,j

(
gj ⊗ gk + gk ⊗ gj) =

1

2
(vk,j + vj,k) g

j ⊗ gk (5.5.19)

and an antisymmetric part given by

Ξ =
1

2
vk,j

(
gj ⊗ gk − gk ⊗ gj ) =

1

2
(vk,j − vj,k) g

j ⊗ gk (5.5.20)
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where ∇v = E+Ξ. Alternatively,

E =
1

2
vk,j

(
gj ⊗ gk + gk ⊗ gj) =

1

2
(vk,j + vj,k) g

j ⊗ gk (5.5.21)

and

Ξ =
1

2
vk,j

(
gj ⊗ gk − gk ⊗ gj) =

1

2
(vk,j − vj,k) g

j ⊗ gk, (5.5.22)

where summation is implied over the repeated indices, j and k.

5.5.6 Curl of a vector field

The alternating tensor, ξ, was discussed in Section 4.13, where it was
shown that

ξ =
1

J ǫpqn gp ⊗ gq ⊗ gn = J ǫpqn g
p ⊗ gq ⊗ gn. (5.5.23)

Recalling the representation (5.5.12), we obtain

ξ : L = (
1

J ǫpqn gp ⊗ gq ⊗ gn) : (vk,j g
j ⊗ gk). (5.5.24)

Rearranging, we obtain

ξ : L =
1

J ǫpqn vk,j (gp ⊗ gq ⊗ gn) : ( g
j ⊗ gk), (5.5.25)

which can be written as

ξ : L =
1

J ǫpqn vk,j δqj δnk gp = ξ : L =
1

J ǫpjk vk,j gp. (5.5.26)

which reproduces expression (5.4.11) for the curl,

ξ : ∇v = ∇× v. (5.5.27)

5.5.7 Coordinate transformations

Consider two sets of coordinates, where the second set is indicated with
a tilde. The covariant–contravariant components of the gradient of a
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vector field transform according to the general tensor rule shown in
(4.8.20),

L̃◦j
i =

∂xp

∂x̃i
∂x̃j

∂xq
L◦q
p . (5.5.28)

Referring to (5.5.7), we obtain

∂ṽj

∂x̃i
+ Γ̃j

mi ṽ
m =

∂xp

∂x̃i
∂x̃j

∂xq
(∂vq
∂xp

+ Γq
ip v

i
)
. (5.5.29)

Rearranging the right-hand side and invoking the chain rule, we obtain

∂ṽj

∂x̃i
+ Γ̃j

mi ṽ
m =

∂x̃j

∂xq
∂vq

∂x̃i
+
∂xp

∂x̃i
∂x̃j

∂xq
Γq
ip v

i. (5.5.30)

Next, we rearrange the first term on the right-hand side and obtain

∂ṽj

∂x̃i
+ Γ̃j

mi ṽ
m =

∂

∂x̃i
(∂x̃j
∂xq

vq
)
− vq

∂

∂x̃i
(∂x̃j
∂xq

)
+
∂xp

∂x̃i
∂x̃j

∂xq
Γq
ip v

i.

(5.5.31)

Recalling from (4.8.15) the vector component transformation rules

ṽi =
∂x̃i

∂xj
vj , vi =

∂xi

∂x̃j
ṽj, (5.5.32)

we find that the first term on the left-hand side of (5.5.31) cancels the
first term on the right-hand side. The remaining equation takes the
form

Γ̃j
mi ṽ

m = −ṽm ∂xq

∂x̃m
∂

∂x̃i
(∂x̃j
∂xq

)
+
∂xp

∂x̃i
∂x̃j

∂xq
∂xi

∂x̃m
Γq
ip ṽ

m. (5.5.33)

Eliminating ṽm from all terms, we recover the transformation rule for
the Christofell symbol of the second kind shown in (4.9.28), repeated
below for convenience,

Γ̃k
ij =

∂x̃k

∂xp
∂xr

∂x̃i
∂xs

∂x̃j
Γp
rs −

∂xp

∂x̃i
∂xr

∂x̃j
∂2x̃k

∂xp∂xr
. (5.5.34)
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5.5.8 Coordinate transformations redux

The covariant components of the gradient of a vector field transform
according to the general tensor rule shown in (4.8.19),

L̃ij =
∂xp

∂x̃i
∂xq

∂x̃j
Lpq. (5.5.35)

Referring to (5.5.11), we obtain

∂ṽj
∂x̃i

− Γm
ij ṽm =

∂xp

∂x̃i
∂xq

∂x̃j
(∂vq
∂xp

− Γm
pq vm

)
. (5.5.36)

Rearranging the right-hand side, we obtain

∂ṽj
∂x̃i

− Γm
ij ṽm =

∂xq

∂x̃j
∂vq
∂x̃i

− ∂xp

∂x̃i
∂xq

∂x̃j
Γm
pq vm. (5.5.37)

Rearranging further the first term on the right-hand side, we obtain

∂ṽj
∂x̃i

− Γm
ij ṽm =

∂

∂x̃i
( ∂xq
∂x̃j

vq
)
− vq

∂2xq

∂x̃j∂x̃i
− ∂xp

∂x̃i
∂xq

∂x̃j
Γm
pq vm.

(5.5.38)

We recall from (4.8.16) the vector component transformation rules

ṽi =
∂xj

∂x̃i
vj , vi =

∂x̃j

∂xi
ṽj , (5.5.39)

and find that the first term on the left-hand side of (5.5.38) cancels
the first term on the right-hand side. The remaining equation takes
the form

Γm
ij ṽm =

∂x̃m

∂xq
∂2xq

∂x̃j∂x̃i
ṽm +

∂xp

∂x̃i
∂xq

∂x̃j
∂x̃m

∂xs
Γs
pq ṽm. (5.5.40)

Eliminating ṽm from all terms, we recover the transformation rule for
the Christofell symbol of the second kind shown in (4.9.22), repeated
below for convenience,

Γ̃k
ij =

∂x̃k

∂xp
∂xr

∂x̃i
∂xs

∂x̃j
Γp
rs +

∂2xp

∂x̃i∂x̃j
∂x̃k

∂xp
. (5.5.41)
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Exercise

5.5.1 Explain how (5.5.34) follows from (5.5.33).

5.6 Gradient of a tensor field

The differential operations on vector fields discussed in earlier in this
chapter can be extended in a straightforward fashion to two-index ten-
sors fields. The main motivation is the availability of expressions that
allow us to state equations of mathematical physics in contravariant or
covariant component form.

The gradient of a tensor field, T, is a three-index tensor defined in
terms of the tensor product and denoted by

N ≡ ∇T ≡ ∇⊗T. (5.6.1)

The left projection of a unit vector, e, onto N is the rate of change
of N with respect to arc length measured in the direction of the unit
vector, ℓ,

e ·∇N = ex
∂T

∂x
+ ey

∂T

∂y
+ ez

∂T

∂z
=
∂T

∂ℓ
, (5.6.2)

where e2x + e2y + e2z = 1.

5.6.1 Representation in curvilinear coordinates

Using (5.2.2), we find that

N = gk ⊗ ∂

∂xk
(T ij gi ⊗ gj) = gk ⊗ ∂

∂xk
(Tij g

i ⊗ gj). (5.6.3)

Two similar expressions can be written involving the mixed components
of T,

N = gk ⊗ ∂

∂xk
(T ◦j

i gi ⊗ gj) = gk ⊗ ∂

∂xk
(T i

◦j gi ⊗ gj), (5.6.4)

where summation is implied over the three repeated indices, i, j, k.
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5.6.2 Covariant derivatives of contravariant components

Expanding the derivative in the first expression in (5.6.3), we obtain

N =
∂T ij

∂xk
gk ⊗ gi ⊗ gj + T ij gk ⊗ ∂gi

∂xk
⊗ gj

+T ij gk ⊗ gi ⊗
∂gj

∂xk
. (5.6.5)

The last two derivatives, ∂gi/∂x
k and ∂gj/∂x

k, can be expressed in
terms of the Christoffel symbols of the second kind using the definition
(4.9.3),

∂ gi

∂xk
≡ Γm

ik gm,
∂ gj

∂xk
≡ Γm

jk gm. (5.6.6)

Substituting these expressions into (5.6.5), we obtain

N =
∂T ij

∂xk
gk ⊗ gi ⊗ gj + T ij Γm

ik g
k ⊗ gm ⊗ gj

+T ij Γm
jk g

k ⊗ gi ⊗ gm. (5.6.7)

Next, we mutually rename the indices i and m in the penultimate term
and the indices j and m in the last term on the right-hand side, and
obtain

N =
∂T ij

∂xk
gk ⊗ gi ⊗ gj + Tmj Γi

mk g
k ⊗ gi ⊗ gj

+T im Γj
mk g

k ⊗ gi ⊗ gj. (5.6.8)

We have found that

N = T ij
,k gk ⊗ gi ⊗ gj, (5.6.9)

where

T ij
,k ≡ ∂T ij

∂xk
+ Γi

mk T
mj + Γj

mk T
im (5.6.10)

is the covariant derivative of the contravariant components of T; sum-
mation is implied over the repeated index, m.
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5.6.3 Covariant derivatives of covariant components

Working in a similar fashion with the second expression in (5.6.3), we
find that

N = Tij,k g
k ⊗ gi ⊗ gj, (5.6.11)

where

Tij,k =
∂Tij
∂xk

− Γm
ik Tmj − Γm

kj Tim (5.6.12)

is the covariant derivative of the covariant components.

5.6.4 Covariant derivatives of mixed components

Working in a similar fashion with the first expression in (5.6.4), we find
that

N = T i
◦j,k g

k ⊗ gi ⊗ gj, (5.6.13)

where

T i
◦j,k =

∂T i
◦j

∂xk
+ Γi

mk T
m
◦j − Γm

jk T
i
◦m (5.6.14)

is a covariant derivative of mixed components.

Working in a similar fashion with the second expression in (5.6.4),
we find that

N = T ◦j
i,k g

k ⊗ gi ⊗ gj , (5.6.15)

where

T ◦j
i,k =

∂T ◦j
i

∂xk
− Γm

ik T
◦j
m + Γj

km T
◦m
i (5.6.16)

is yet another covariant derivative of mixed components.
Note that the sign of the terms involving the Christoffel symbols on the
right-hand sides of (5.6.10), (5.6.12), (5.6.14), and (5.6.16) is positive
when m appears as a superscript and negative when m appears as a
subscript on T .
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5.6.5 Ricci’s lemma

We recall the following expansion of the metric tensor represented by
the identity tensor, I,

I = gij g
i ⊗ gj = gi ⊗ gi = gi ⊗ gi = gij gi ⊗ gj. (5.6.17)

Identifying T with I, setting ∇I = 0, and referring to (5.6.9) and
(5.6.11), we derive Ricci’s lemma expressed by

gij,k = 0, gij,k = 0. (5.6.18)

Substitutions the expressions for the covariant derivatives involved in
these equations, we obtain the equations

∂gij
∂xk

= gmj Γ
m
ik + gim Γm

kj,

∂gij

∂xk
= −gmj Γi

mk − gim Γj
mk, (5.6.19)

expressing the first and second parts of Ricci’s lemma.

Since gm
◦k = δmk and gi◦m = δim, we find from (5.6.14) and (5.6.16)

that

gi◦j,k = 0, g◦ji,k = 0. (5.6.20)

Consequently, equations (5.6.13) and (5.6.15) for T = I are identically
satisfied.

5.6.6 Derivative of the metric coefficient

From the last entry of Table 4.1.1, we read that

∂J
∂xk

=
1

2
J gij

∂gij
∂xk

. (5.6.21)

Substituting the expression for the last derivative ∂gij/∂x
k given in

(5.6.19), we obtain

∂J
∂xk

=
1

2
J gij(gmj Γ

m
ik + gim Γm

kj ). (5.6.22)
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Simplifying, we obtain

1

J
∂J
∂xk

= Γm
mk, (5.6.23)

which provides us with the spatial rate of change of the Jacobian along
the kth contravariant coordinate in terms of the Christoffel symbols.

Exercise

5.6.1 Derive (5.6.23) from (5.6.22)

5.7 Divergence of a tensor field

The divergence of a tensor field, T, is a vector field denoted by ψ,
given by

ψ ≡ ∇ ·T = ψjgj = ψj g
j, (5.7.1)

where ψj are the contravariant components and ψj are the covariant
components of ψ.

Using expression (5.2.1) for the gradient operator, we write

ψ = gk · ∂

∂xk
(T ij gi ⊗ gj) = gk · ∂

∂xk
(Tij g

i ⊗ gj). (5.7.2)

Two similar expressions can be written involving the mixed components
of T,

ψ = gk · ∂

∂xk
(T ◦j

i gi ⊗ gj) = gk · ∂

∂xk
(T i

◦j gi ⊗ gj), (5.7.3)

where summation is implied over the repeated indices, i, j, k.

5.7.1 Contravariant components

Expanding the derivative with respect to xk in the first expression of
(5.7.2), we find that

ψ =
∂T ij

∂xk
gk · gi ⊗ gj + T ij gk · ∂gi

∂xk
⊗ gj

+T ij gk · gi ⊗
∂gj

∂xk
, (5.7.4)
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where gk · gi = δki in the first and last terms on the right-hand side.
Expressing the derivatives of the covariant base vectors on the right-
hand side in terms of the Christoffel symbols of the second kind using
the definition (4.9.3), repeated below for convenience,

∂ gi

∂xk
≡ Γm

ik gm,
∂ gj

∂xk
≡ Γm

jk gm, (5.7.5)

we obtain

ψ =
∂T ij

∂xi
gj + T ij Γk

ik gj + T ij Γm
ji gm. (5.7.6)

Next, we mutually rename the indices j and m in the last term on the
right-hand side, and obtain

ψ ≡ ∇ ·T =
∂T ij

∂xi
gj + T ij Γk

ik gj + T im Γj
mi gj. (5.7.7)

We have found that

ψ ≡ ∇ ·T = ψj gj, (5.7.8)

where

ψj =
∂T ij

∂xi
+ Γk

mk T
mj + Γj

mi T
im = T ij

,i (5.7.9)

and the covariant derivative of the contravariant tensor components,
indicated by a comma, is defined in (5.6.10) as

T ij
,k =

∂T ij

∂xk
+ Γi

mk T
mj + Γj

mk T
im. (5.7.10)

The expression in (5.7.9) arising by setting k = i.

Working in a similar fashion, with the first expression in (5.7.3), we
find the alternative representation

ψj = T ◦j
i,k g

ik, (5.7.11)

where the covariant derivative T ◦j
i,k is defined in equation (5.6.16) as

T ◦j
i,k =

∂T ◦j
i

∂xk
− Γm

ik T
◦j
m + Γj

km T
◦m
i . (5.7.12)
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5.7.2 Covariant components

Working in a similar fashion with the second expressions in (5.7.2) and
(5.7.3), we find that the covariant components of ψ are given by

ψj = T i
◦j,i = Tij,k g

ik, (5.7.13)

where

T i
◦j,k =

∂T i
◦j

∂xk
+ Γi

mk T
m
◦j − Γm

jk T
i
◦m (5.7.14)

is a covariant derivative defined in (5.6.14) and

Tij,k =
∂Tij
∂xk

− Γm
ik Tmj − Γm

kj Tim (5.7.15)

is another covariant derivative defined in (5.6.12).

5.7.3 Laplacian of a vector field

The Laplacian of a vector field, u, is another vector field, denoted by
∇2u, defined as the divergence of the gradient of the field, ∇ ⊗ u,
that is,

ψ ≡ ∇2u = ∇ · (∇⊗ u). (5.7.16)

Invoking formula (5.5.8) for the gradient of a vector field,

T ≡ ∇u = uj,i g
i ⊗ gj, (5.7.17)

and referring to equation (5.7.11), we set

T ◦j
i = uj,i. (5.7.18)

Substituting this expression into (5.7.11), we find that

ψj = T ◦j
i,k g

ik = (uj,i),k g
ik ≡ uj,ik g

ik. (5.7.19)

In conclusion, we have found that

∇2u = uj,ik g
ik gj , (5.7.20)
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where summation is implied over the repeated indices i, j, k.

Exercise

5.7.1 Derive the expression shown in (5.7.13).

5.8 Riemann–Christoffel curvature tensor

Following the discussion of Section 5.7, now we identify a tensor, T,
with the gradient of a vector field, u,

T = ∇⊗ u, (5.8.1)

and consider the gradient

N ≡ ∇T ≡ ∇⊗T = ∇⊗∇⊗ u. (5.8.2)

In Cartesian coordinates indicated by Greek indices, N is a three-index
tensor given by

∇⊗T =
∂2uγ
∂xα∂xβ

eα ⊗ eβ ⊗ eγ . (5.8.3)

The component matrix of second derivatives is symmetric with respect
to α and β.

5.8.1 Expression in curvilinear coordinates

We recall from (5.6.11) that

N = Tij,k g
k ⊗ gi ⊗ gj, (5.8.4)

where

Tij,k =
∂Tij
∂xk

− Γm
ik Tmj − Γm

kj Tim (5.8.5)

is the covariant derivative of the covariant components. Substituting
Tij = uj,i and recalling that

uj,i ≡
∂uj
∂xi

− Γp
ij up, (5.8.6)
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we obtain

Tij,k =
∂

∂xk

(∂uj
∂xi

− Γp
ij up

)
− Γm

ik

( ∂uj
∂xm

− Γp
mj up

)

−Γm
kj

(∂um
∂xi

− Γp
im up

)
. (5.8.7)

Carrying out the differentiation in the first term on the right-hand side
and rearranging, we obtain

Tij,k =
(
Γm
kjΓ

p
im −

∂Γp
ij

∂xk
)
up (5.8.8)

+
∂2uj
∂xk∂xi

− Γp
ij

∂up
∂xk

− Γm
kj

∂um
∂xi

− Γm
ik

∂uj
∂xm

+ Γm
ik Γ

p
mj up.

The last five terms on the right-hand side remain unchanged when
the indices k and i are mutually switched. Consequently, twice the
antisymmetric part of these tensor components with respect to the
indices i and k is

Ajik ≡ Tij,k − Tkj,i =
(
Γm
kjΓ

p
im −

∂Γp
ij

∂xk
)
up

−
(
Γm
ijΓ

p
km −

∂Γp
kj

∂xi
)
up, (5.8.9)

where Ajik = −Ajki. Now we define

Ajik ≡ Rp
◦jik up, (5.8.10)

where

Rp
◦jik ≡ Γp

imΓ
m
kj −

∂Γp
ij

∂xk
− Γp

kmΓ
m
ij +

∂Γp
kj

∂xi
(5.8.11)

are the components of the Riemann–Christoffel curvature tensor. We
have found that

A = u · (Rp
◦jik gp ⊗ gj ⊗ gi ⊗ gk), (5.8.12)

which shows that

A = u ·R, (5.8.13)
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where

R ≡ Rp
◦jik g

p ⊗ gj ⊗ gi ⊗ gk (5.8.14)

is the Riemann–Christofell curvature tensor. The vanishing of the
Riemann–Christoffel curvature tensor for a complete set of curvilin-
ear coordinates, R = 0, to be confirmed later in this section, ensures
that A = 0 for any u, as required for the matrix of second derivatives
in Cartesian coordinates to be symmetric.

5.8.2 Covariant components

The pure covariant components of the Riemann–Christoffel curvature
tensor are given by

Rijkp = giqRq
◦jkp, (5.8.15)

where

R = Rijkp g
i ⊗ gj ⊗ gk ⊗ gp. (5.8.16)

We find that

Rijkp =
∂Γi;jp

∂xk
− ∂Γi;jk

∂xp
+ Γq;ip Γ

q
jk − Γq;ik Γ

q
jp, (5.8.17)

where Γq;ip are the Christoffel symbols of the first kind defined and
discussed in Section 4.8. The Christoffel symbols of the first kind in
equation in equation (5.8.17) can be expressed in terms of the metric
coefficients using (4.9.32), yielding

Rijkp =
1

2

( ∂2gip
∂xj∂xk

+
∂2gjk
∂xi∂xp

− ∂2gik
∂xj∂xp

− ∂2gjp
∂xi∂xk

)

+gnm
(
Γn
jkΓ

m
ip − Γn

jpΓ
m
ik

)
. (5.8.18)

These expressions reveal that

Rkimj = Rmjki = −Rikmj = −Rkijm. (5.8.19)

Moreover,

Rkimj +Rkmji +Rkjim = 0. (5.8.20)
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5.8.3 Vanishing of R

To prove that R = 0, we differentiate the definition of the Christof-
fel symbols of the second kind given in (4.9.5), repeated below for
convenience,

Γk
ij =

∂ gi

∂xj
· gk, (5.8.21)

and obtain

∂Γk
ij

∂xm
=

∂2 gi

∂xm∂xj
· gk +

∂ gi

∂xj
· ∂ g

k

∂xm
. (5.8.22)

Expressing each derivative in the last term on the right-hand side in
terms of the Christoffel symbols using (4.9.3) and (4.9.11), we obtain

∂Γk
ij

∂xm
=

∂2 gi

∂xm∂xj
· gk − Γn

ij Γ
k
pm gn · gp. (5.8.23)

Simplifying the last term, we obtain

∂Γk
ij

∂xm
=

∂2 gi

∂xm∂xj
· gk − Γn

ijΓ
k
nm. (5.8.24)

Interchanging the indices j and m, we obtain

∂Γk
im

∂xj
=

∂2 gi

∂xm∂xj
· gk − Γn

imΓ
k
nj. (5.8.25)

Finally, we subtract the last two equations and derive an identity,

Rk
◦imj ≡

∂Γk
ji

∂xm
− ∂Γk

mi

∂xj
+ Γk

mnΓ
n
ji − Γk

jnΓ
n
mi = 0, (5.8.26)

where Rk
◦imj are components of the Riemann–Christoffel curvature ten-

sor.

5.8.4 Euclidean v. Riemannian

A Euclidean space is capable of supporting a Cartesian frame where all
Christoffel symbols, and thus all components of the Riemann–Christoffel
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curvature tensor, are identically zero. This means that the compo-
nents of the Riemann–Christoffel curvature tensor in any coordinate
system defined in Euclidean space are also zero, as confirmed by iden-
tity (5.8.26).

However, the Riemann–Christoffel curvature tensor is nonzero in a
reduced Euclidean dimensional space, such as the surface of a sphere,
where the dimension of the base vectors is higher than the number
of curvilinear coordinates employed. In this context, the surface of a
sphere is a non-Euclidean Riemannian manifold, as discussed in Section
6.4 in the context of surface coordinates.

5.8.5 General relativity

The Ricci curvature tensor is defined as

R = Rij g
i gj , (5.8.27)

where Rij ≡ Rk
◦ikj are covariant components and summation is implied

over the repeated index, k. Einstein’s equation of general relativity in
the space–time domain reads

Rij − 1

2
̺ gij =

8πG

c4
Tij , (5.8.28)

where

̺ ≡ trace(R) = gijRij = R◦i
i = Ri

◦i (5.8.29)

is the scalar curvature, G is the gravitational acceleration, c is the speed
of light in vacuum, and Tij are the covariant components of the stress–
energy tensor, T. In Section 6.8, we will see that ̺ is proportional to
the Gaussian curvature on any surface embedded in three-dimensional
space.

Exercise

5.8.1 Derive (5.8.17) from (5.8.26).
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5.9 Equations of mathematical physics

A summary of differential operations derived in this chapter for scalars
and vectors is shown in Tables 5.9.1. A corresponding summary for
tensors is shown in Table 5.9.2. The application of the formulas dis-
played in these tables to typical equations of mathematical physics will
be illustrated in this section. with reference to the continuity equation,
the Cauchy equation of motion, and the Navier–Stokes equation.

5.9.1 Continuity equation

The continuity equation ensures that mass is conserved locally and
globally in the flow of an incompressible or compressible fluid. The
Eulerian form of the continuity equation is

∂ρ

∂t
+∇ · (ρu) = 0, (5.9.1)

where t stands for time, ρ is the fluid density, and u is the fluid velocity.
In curvilinear coordinates, the continuity equation reads

∂ρ

∂t
+ (ρ u)i,i = 0, (5.9.2)

where the comma indicates the covariant derivative. Invoking the def-
inition of the covariant derivative, we obtain the explicit form

∂ρ

∂t
+
∂(ρui)

∂xi
+

1

J
∂J
∂xi

ρui = 0, (5.9.3)

where J =
√
g and g = det(g).

5.9.2 Cauchy equation of motion

The Cauchy equation governs the motion of an incompressible or com-
pressible fluid. The Eulerian form of Cauchy’s equation reads

∂u

∂t
+ u ·∇u = −1

ρ
∇ · σ + g, (5.9.4)

where σ is the Cauchy stress tensor and g is the gravitational acceler-
ation.
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Gradient of a scalar field ∇f = (∇f)i gi = (∇f)i g
i

(∇f)i =
∂f

∂xi
, (∇f)i = gij

∂f

∂xj

Directional derivatives gi ·∇f =
∂f

∂xi
, gi ·∇f =

∂f

∂xi

Convective derivative v ·∇f = vifi = vif
i

Covariant derivative ui,j ≡
∂ui

∂xj
+ Γi

jk u
k

Covariant derivative ui,j ≡
∂ui
∂xj

− Γk
ji uk

Divergence of a vector field ∇ · u = ui,i =
∂ui

∂xi
+

1

J
∂J
∂xi

ui

Curl of a vector field ∇× u = uk,j g
j × gk

Gradient of a vector field ∇u = uk,j g
j ⊗ gk

Convective derivative of u v ·∇u = vjuk,j gk

Laplacian of a scalar field ∇2f = ∇ ·∇f =
∂f

∂xi∂xi
+ Γj

ij

∂f

∂xi

Laplacian of a vector field ∇2u = uj,ik g
ik gj

Table 5.9.1 Summary of expressions for differential operations on
scalar and vector fields in curvilinear coordinates, where J =

√
g

and g = det[gij ]. A comma indicates a covariant derivative.



D
R
A
F
T

298 Tensors Unravelled, C. Pozrikidis, © 2026

Covariant derivative T ij
,k =

∂T ij

∂xk
+ Γi

mk T
mj + Γj

mk T
im

Covariant derivative Tij,k =
∂Tij
∂xk

− Γm
ik Tmj − Γm

kj Tim

Covariant derivative T i
◦j,k =

∂T i
◦j

∂xk
+ Γi

mk T
m
◦j − Γm

jk T
i
◦m

Covariant derivative T ◦j
i,k =

∂T ◦j
i

∂xk
− Γm

ik T
◦j
m + Γj

km T
◦m
i

Divergence of a tensor field ∇ ·T = T ij
,i gj = T i

j,i g
j

Table 5.9.2 Summary of expressions for differential operations on
tensor fields in curvilinear coordinates. A comma indicates a
covariant derivative.

Each term in the Cauchy equation of motion is a vector. The ith
contravariant component of each term is as follows:

( ∂u
∂t

)i

=
∂ui

∂t
, (u ·∇u)i = uj ui,j (5.9.5)

and

(∇ · σ)i = σji
,j , (g)i = gi. (5.9.6)

Accordingly, the ith contravariant component of the Cauchy equation
of motion reads

∂ui

∂t
+ uj ui,j =

1

ρ
σji
,j + gi. (5.9.7)

The associated covariant components can be deduced using the rule
for lowering the indices.
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5.9.3 Navier–Stokes equation

The Navier–Stokes equation governs the motion of an incompressible
Newtonian fluid. The Eulerian form of the Navier–Stokes equation is

ρ
( ∂u
∂t

+ u ·∇u
)
= −∇p+ µ∇2u+ ρg, (5.9.8)

where p is the pressure and µ is the fluid viscosity.

Each term in the Navier–Stokes equation is a vector. The ith con-
travariant component of each term is as follows:

( ∂u
∂t

)i

=
∂ui

∂t
, (u ·∇u)i = uj ui,j, (5.9.9)

and

(∇p)i = gij
∂p

∂xj
, (∇2u)i = gjkui,jk, (g)i = gi.(5.9.10)

Accordingly, the ith contravariant component of the Navier–Stokes
equation of motion reads

ρ (
∂ui

∂t
+ uj ui,j ) = −gij ∂p

∂xj
+ µ gjkui,jk + gi. (5.9.11)

The associated covariant components can be deduced readily by low-
ering the indices.

Exercises

5.9.1 State the covariant components of each term in the Navier–
Stokes equation.

5.9.2 State the contravariant components of each term of an equation
of mathematical physics of your choice.

5.10 Moving time derivative

Suppose that a temperature probe is moving with velocity φ in a tem-
porally and spatially evolving ambient temperature field, T (t,x). The
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rate of change of the temperature recorded by the probe is described
by the probe time derivative denoted with a dot,

Ṫ (t,X(t)), (5.10.1)

where X(t) is the probe position. The probe velocity is

φ ≡ dX

dt
. (5.10.2)

Using the chain rule, we obtain

Ṫ =
∂T

∂t
+

dXα

dt

∂T

∂xα
=
∂T

∂t
+

dX

dt
·∇T, (5.10.3)

where Greek indices indicate Cartesian coordinates and summation is
implied over the repeated index, α. In terms of the probe velocity, we
obtain

Ṫ =
∂T

∂t
+ φ ·∇T. (5.10.4)

Using the general relation (5.1.7), we find that

φ ·∇T = φα
∂T

∂xα
= φi ∂T

∂xi
, (5.10.5)

where Greek indices indicate Cartesian coordinates and summation is
implied over the repeated indices, α and i.

Assume that the probe moves in a medium that flows with velocity,
u(x, t). If the probe velocity is equal to the medium velocity, φ = u,
then the probe time derivative is the material derivative.

5.10.1 Evolution of a scalar recording

Rearranging equation (5.10.4), we obtain the expression

∂T

∂t
= Ṫ − φ ·∇T, (5.10.6)

which can be substituted into an evolution equation to replace ∂T/∂t
with the probe time derivative. For example, in the case of the convec-
tion equation,

∂T

∂t
+ v ·∇T = 0, (5.10.7)
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we obtain

Ṫ + (v − φ) ·∇T = 0, (5.10.8)

where v is a convection velocity. When φ = v, we find that Ṫ =
0, which means that the temperature recorded by the probe remains
constant in time.

5.10.2 Evolution of a vectorial recording

The rate of change of a vector field, u, recorded by an observer who
moves with velocity φ is given by

u̇ =
∂u

∂t
+ φ ·∇u, (5.10.9)

where ∇u is the gradient of u. In Cartesian coordinates denoted by
Greek subscripts, the αβ component of the tensor ∇u is ∂uβ/∂xα,
and equation (5.10.9) takes the form

u̇β =
∂uβ
∂t

+ φα
∂uβ
∂xα

. (5.10.10)

In general curvilinear coordinates equation (5.10.9) takes the form

u̇ =
∂u

∂t
+ φj ui,j gi, (5.10.11)

where a comma denotes the covariant derivative.

Identifying the vector field u with the position, x or X, we obtain

Ẋ =
∂x

∂t
+ φ ·∇x, (5.10.12)

where first term on the right-hand side is zero, ∇x = I, and I is the
identity matrix, in agreement with (5.10.2).

5.10.3 Evolution of a vector field

Rearranging equation (5.10.9), we obtain the expression

∂u

∂t
= u̇− φ ·∇u, (5.10.13)
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which can be substituted into an evolution equation to replace ∂u/∂t
with the probe time derivative. For example, in the case of the convec-
tion equation,

∂u

∂t
+ v ·∇u = 0, (5.10.14)

we obtain

u̇+ (v − φ) ·∇u = 0, (5.10.15)

where v is a convection velocity. When φ = v, the vectorial field u

recorded by the probe remains constant in time.

Exercise

5.10.1 The temperature of the atmosphere near the surface of the
earth decreases with altitude according to the equation

T (z, t) = Tsurface(t)− Γ(t) z, (5.10.16)

where Tsurface(t) is the surface temperature, Γ(t) is the lapse rate, z
is the altitude, and t stands for time. A temperature probe is moving
vertically with velocity φ = φ0 exp(−νz), where φ0 and ν are two
constants. Derive an expression for the derivative dTprobe/dt in terms
of time, t, not involving the altitude.

5.11 Evolving coordinates

A set of contravariant coordinate lines, xi, and the associated covariant
base vectors, gi, may be evolving in time, t, through space. A fixed
point in space, x, corresponds to a time-dependent set of contravariant
coordinates described by a function

xi = Ci(x, t), (5.11.1)

and associated covariant base vectors, as shown in Figure 5.11.1. Time
dependence does not appear in the case of stationary coordinates.
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Figure 5.11.1 Illustration of evolving curvilinear coordinates shown
at two time instants. A certain point in a plane, indicated by a
circle, may correspond to a time-dependent set of contravariant
coordinates, xi(t), and associated covariant base vectors, gi(t).

Conversely, a certain set of curvilinear coordinates describes a mov-
ing point in space whose trajectory is described by an equation

x = M(x1, x2, x3, t), (5.11.2)

where M is an appropriate function. In the case of stationary coordi-
nates, the point is stationary.

5.11.1 Vector resolution

A vector, u, evaluated at a particular point in space, x, at a certain
time instant, t, can be resolved into an evolving set of covariant or
contravariant base vectors and associated components as

u(x, t) = ui(x, t) gi(x, t) = ui(x, t) g
i(x, t), (5.11.3)

where summation is implied over the repeated index, i. The time
dependence of the base vectors is due exclusively to the evolution of
the coordinates. However, the contravariant or covariant components,
ui(x, t) and ui(x, t), may be evolving even in the case of stationary
coordinates.
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5.11.2 Evolution of a vector field

In applications, the structure or evolution of a vector field, u, is de-
termined by a governing equation based on a conservation principle or
physical law. To express the governing equation in time-dependent co-
ordinates, we employ the notion of the probe time derivative indicated
by a dot, as discussed in Section 5.10.

Taking the probe time derivative of the first expansion in (5.11.3),
and expanding the derivative using the usual rules of product differen-
tiation, we obtain

u̇ = u̇i gi + ui ġi, (5.11.4)

where

u̇i =
∂ui

∂t
+ φ ·∇ui, ġi =

∂gi

∂t
+ φ ·∇gi, (5.11.5)

and φ is the probe velocity. Combining equation (5.11.4) with equation
(5.10.9), repeated below for convenience,

u̇ =
∂u

∂t
+ φ ·∇u, (5.11.6)

and rearranging, we obtain

∂u

∂t
= u̇i gi + ui ġi − φ ·∇u, (5.11.7)

which can be substituted into an evolution equation for u to express
∂u/∂t in terms of probe time derivatives.

5.11.3 Resolution of the probe velocity

We may introduce the contravariant and covariant components of φ
and write the expansions

φ(X(t), t) = φi(X(t), t) gi(X(t), t)

= φi(X(t), t) gi(X(t), t), (5.11.8)

where X(t) is the probe position. Substituting the first expression into
the last term on the right-hand side of (5.11.7), we obtain

∂u

∂t
= u̇i gi + ui ġi − φi gi ·∇u. (5.11.9)
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Using expansion (5.5.8) for the gradient ∇u, we obtain

∂u

∂t
= u̇i gi + ui ġi − φjui,j gi, (5.11.10)

where

ui,j ≡
∂ui

∂xj
+ Γi

kj u
k (5.11.11)

is a covariant derivative. The right-hand side of (5.11.10) can be sub-
stituted into an evolution equation involving ∂u/∂t.

5.11.4 One dimension

In the case of one dimension over the x axis, we introduce a contravari-
ant coordinate, x1, and write

g1 = g1 ex, g1 = g1 ex, g1 =
∂x

∂x1
, g1 =

∂x1

∂x
, (5.11.12)

where ex is the unit vector along the x axis. The only non-zero
Christofell symbols of the second kind is

Γ1
11 =

∂g1
∂x

. (5.11.13)

Next, we expand

φ = φ ex = φ1 g1 = φ1g1 ex, (5.11.14)

and

u = u ex = u1 g1 = u1 g1 ex, (5.11.15)

where u1 and φ1 are contravariant components. The probe velocity
component, φ1 can be arbitrarily prescribed. The covariant derivative
of u1 is given by

u1,1 =
∂u1

∂x1
+
∂g1
∂x

u1. (5.11.16)

Manipulating the derivatives, we obtain

u1,1 =
∂x

∂x1
∂u1

∂x
+
∂g1
∂x

u1 = g1
∂u1

∂x
+
∂g1
∂x

u1 (5.11.17)



D
R
A
F
T

306 Tensors Unravelled, C. Pozrikidis, © 2026

and then

u1,1 =
∂(u1g1)

∂x
=
∂u

∂x
. (5.11.18)

Substituting these expressions into equation (5.11.7) and eliminating
ex from both sides, we obtain

∂u

∂t
= u̇1 g1 + u1 ġ1 − φ

∂u

∂x
, (5.11.19)

which can be restated as

∂u

∂t
=

(
u̇1 + u1 ˙ln g1 − φ1 ∂u

∂x

)
g1. (5.11.20)

These equations also arise directly from (5.11.10).

Exercise

5.11.1 Confirm (5.11.19) for the case of a uniform distribution where
v is a time-dependent uniform field.

5.12 Moving coordinates

With reference to the evolving coordinates discussed in Section 5.11,
now we assume that probes move to find themselves at a position
corresponding to fixed contravariant coordinates, xi. The probe time
derivative of any appropriate field function, ψ, is the time derivative
under constant xi,

ψ̇ =
(∂ψ
∂t

)
x1,x2,x3

. (5.12.1)

The probe velocity is given by the time derivative

φ =
(∂X
∂t

)
x1,x2,x3

, (5.12.2)

where X is the probe position. By definition,

Ẋ i = 0 (5.12.3)
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for i = 1, 2, 3.

5.12.1 Distributed probes

Probes could be distributed throughout the entire space so that the
probe velocity may be considered a function of arbitrary position in
space and time,

φ(x, t), (5.12.4)

where position could be determined by instantaneous contravariant co-
ordinates.

In Section 5.10, we derived the evolution equation (5.10.6) for a
distributed scalar field, T ,

∂T

∂t
= Ṫ − φ ·∇T. (5.12.5)

Applying this equation for T = X i, and recalling that the contravariant
base vectors are given by gi = ∇xi, as shown in (4.2.6), we obtain

∂X i

∂t
= −φ ·∇xi = −φj gj ·∇xi (5.12.6)

and then

∂X i

∂t
= −φj gj · gi = −φj δij = −φi, (5.12.7)

yielding

φi = −∂X
i

∂t
, (5.12.8)

where the partial derivative on the right-hand side is taken under con-
stant position, x.

Now recalling that the covariant base vectors at a certain time are
defined as gi ≡ ∂X/∂xi, we find that

(∂ gi

∂t

)
x1,x2,x3

=
∂2X

∂xi∂t
=

∂

∂xi

(∂X
∂t

)
=
∂φ

∂xi
. (5.12.9)



D
R
A
F
T

308 Tensors Unravelled, C. Pozrikidis, © 2026

Using (4.13.4) to write

∂φ

∂xi
= φj

,i gj , (5.12.10)

where

φj
,i ≡

∂φj

∂xi
+ Γj

ik u
k (5.12.11)

is the covariant derivative, we obtain the expression

(∂gi

∂t

)
x1,x2,x3

= φj
,i gj , (5.12.12)

where summation is implied over the repeated index, j.

5.12.2 Evolution of a vectorial recording

Equation (5.10.9) for a vector field, u, becomes

(∂u
∂t

)
x1,x2,x3

=
∂u

∂t
+ φ ·∇u, (5.12.13)

and equation (5.11.4) becomes

(∂u
∂t

)
x1,x2,x3

=
(∂ui
∂t

)
x1,x2,x3

gi + ui
(∂gi

∂t

)
x1,x2,x3

. (5.12.14)

Substituting expression (5.12.12) into the last term on the right-hand
side of (5.12.14), we obtain

(∂u
∂t

)
x1,x2,x3

=
(∂ui
∂t

)
x1,x2,x3

gi + uiφj
,i gj , (5.12.15)

which can be restated as
(∂u
∂t

)
x1,x2,x3

=
(∂ui
∂t

)
x1,x2,x3

gi + u ·∇φ, (5.12.16)

where ∇φ is the matrix gradient of φ.

Now setting the right-hand side of (5.12.13) equal to the right-hand
side of (5.12.16), and rearranging, we obtain

∂u

∂t
=

(∂ui
∂t

)
x1,x2,x3

gi + u ·∇φ− φ ·∇u, (5.12.17)
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which can be restated as

∂u

∂t
=

(∂u
∂t

)i

gi, (5.12.18)

where

(∂u
∂t

)i

=
(∂ui
∂t

)
x1,x2,x3

+ uj φi
,j − φj ui,j (5.12.19)

is the ith contravariant component of the Eulerian time derivative,
∂u/∂t. The expressions given in (5.12.17) and (5.12.18) allow us to
express the ith contravariant component of the Eulerian derivative on
the left-hand side in terms of a coordinate probe time derivative.

To derive a mnemonic rule, we rearrange equations (5.12.17) and
(5.12.19) to obtain

∂u

∂t
+ φ ·∇u =

(∂ui
∂t

)
x1,x2,x3

gi + u ·∇φ (5.12.20)

and

(∂u
∂t

)i

+ φj ui,j =
(∂ui
∂t

)
x1,x2,x3

+ uj φi
,j, (5.12.21)

subject to (5.12.2).

5.12.3 Cauchy equation of motion

As an application, we consider the Cauchy equation of motion discussed
in Section 5.1,

∂u

∂t
+ u ·∇u = −1

ρ
∇ · σ + g. (5.12.22)

Using expression (5.12.17) for the time derivative, we find that, in a
moving coordinate system, this equation takes the form

(∂ui
∂t

)
x1,x2,x3

gi + u ·∇φ+ (u− φ) ·∇u = −1

ρ
∇ · σ + g,

(5.12.23)
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subject to (5.12.2). The ith contravariant component of this equation
reads

(∂ui
∂t

)
x1,x2,x3

+ uj φi
,j + (uj − φj) ui,j =

1

ρ
σji
,j + gi, (5.12.24)

where a comma denotes a covariant derivative,

5.12.4 One dimension

In the case of one dimension over the x axis,

φ =
(∂x
∂t

)
x1

,
(∂g1
∂t

)
x1

=
∂φ

∂x1
, (5.12.25)

and φ is a specified velocity along the x axis. Equation (5.11.19)
becomes

(∂u
∂t

)
x
=

(∂u1
∂t

)
x1

g1 + u
∂φ

∂x
− φ

∂u

∂x
. (5.12.26)

Consider a one-dimensional distribution, Φ(x, t), propagating along
the x axis with phase velocity c, so that

u = Φ(x− c t). (5.12.27)

Substituting this expression into (5.12.26), we obtain

−cΦ′ =
(∂u1
∂t

)
x1

g1 + Φ
∂φ

∂x
− φΦ′, (5.12.28)

where a prime denotes a derivative with respect to w ≡ x− ct, Rear-
ranging, we obtain

(∂u1
∂t

)
x1

g1 = (φ− c) Φ′ − Φ
∂φ

∂x
. (5.12.29)

We see that it is beneficial to set φ = c so that the right-hand side is
zero.
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5.12.5 Translating and rotating coordinates

In the case of translating and rotating coordinates,

φ(x, t) = U(t) +Ω(t)×
(
x− x0(t)

)
, (5.12.30)

where U is the coordinate system velocity of translation and Ω is the
angular velocity of rotation about the instantaneous origin of the mov-
ing coordinates, x0. In the moving system, the vector u appears as v,
where

u = v + φ. (5.12.31)

The left-hand side of the equation of motion (5.12.23) becomes

(∂(vi + φi)

∂t

)
x1,x2,x3

gi + (v + φ) ·∇φ+ v ·∇(v + φ), (5.12.32)

which can be simplified to

(∂vi
∂t

)
x1,x2,x3

gi + v ·∇v +A, (5.12.33)

where

A =
∂φ

∂t
+ (2v + φ) ·∇φ. (5.12.34)

Substituting expression (5.12.30) for φ, we find that

A =
dU

dt
+

dΩ

dt
×
(
x− x0

)
−Ω× dx0

dt
+Ω× (2v +U +Ω× (x− x0)). (5.12.35)

Setting dx0/dt = U and simplifying, we obtain

A =
dU

dt
+

dΩ

dt
× x̂+ 2Ω× v +Ω× (Ω× x̂), (5.12.36)

where x̂ = x−x0. The negative of each term multiplied by the density
represent the linear acceleration force, −ρ dU/dt, the Coriolis force,
−2 ρΩ × v, the centrifugal force, −ρΩ × (Ω × x̂), and the angular
acceleration force, −ρ (dΩ/dt)× x̂.
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5.12.6 Translating field

As an example, we consider the evolution of a uniform vector field,
u = U(t), where U(t) is a function of time. Equation (5.12.17)
reduces to

dU

dt
=

(∂ui
∂t

)
x1,x2,x3

gi +U ·∇φ. (5.12.37)

As expected, the second term on the right-hand side is absent when
the curvilinear coordinates move as a rigid body, that is, φ is constant.
When φ expresses rigid-body rotation about a point xR with angular
velocity Ω, we set φ = Ω× x and obtain

dU

dt
=

(∂ui
∂t

)
x1,x2,x3

gi +Ω×U. (5.12.38)

Exercise

5.12.1 Simplify equation (5.12.17) for a flow expressing rigid-body
rotation.

5.13 Convected coordinates

Differential equations often involve a velocity field, u. When a set of
curvilinear coordinates are convected with this velocity field,

φ = u, (5.13.1)

the differential equations are considerably simplified. Referring to equa-
tion (5.12.17), we set φ = u and derive the simplified expression

∂u

∂t
=

(∂ui
∂t

)
x1,x2,x3

gi, (5.13.2)

where the convected covariant base vectors, gi, generally depend on
position, x, and time, t.
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5.13.1 Cauchy equation of motion

Using (5.13.2), we find that, in convected coordinates, the ith con-
travariant component of Cauchy’s equation of motion (5.12.24) takes
the form

(∂ui
∂t

)
x1,x2,x3

+ uj ui,j =
1

ρ
σji
,j + gi, (5.13.3)

where a comma indicates a covariant derivative. In fact, this equation
is precisely the same as that in stationary coordinates, as shown in
(5.9.7).

5.13.2 Point source in oscillatory streaming flow

Consider the temperature field generated by a three-dimensional point
source of heat located at the origin, in the presence of an oscillatory
streaming flow. The Cartesian velocity components along the x, y, and
z axes are given by

ux = U sin(ωt+ φ), uy = 0, uz = 0, (5.13.4)

where U is the amplitude of the velocity, ω is the angular frequency,
and φ is the phase shift. The source is activated impulsively at the
origin of time, t = 0, by sending an electrical signal through a wire.

The induced temperature field, G, identified as a Green’s function,
satisfies the three-dimensional singularly forced convection–diffusion
equation

∂G
∂t

+ U sin(ωt+ φ)
∂G
∂x

= κ (
∂2G
∂x2

+
∂2G
∂y2

+
∂2G
∂z2

) + δ(x) δ(y) δ(z) δ(t), (5.13.5)

where δ is the one-dimensional Dirac delta function, and κ is the
medium thermal diffusivity.

To find the solution, we introduce convected Cartesian coordinates,
ξ, η, and ζ , defined by

x = ξ − U

ω
cos(ωt+ φ), y = η, z = ζ. (5.13.6)
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The inverse relations are

ξ = x+
U

ω
cos(ωt+ φ), η = y, ζ = z. (5.13.7)

Since

φ =
(∂x
∂t

)
ξ,η,ζ

= u, (5.13.8)

the convected coordinates follow material point particles moving under
the influence of the oscillatory flow.

The Green’s function can be regarded as a function of ξ, η, ζ , and
time, t,

G(x, y, z, t) = Q(ξ, η, ζ, t). (5.13.9)

Using the chain rule, we find that

∂G
∂t

=
∂Q
∂t

+
∂Q
∂ξ

∂x1

∂t
+
∂Q
∂η

∂x2

∂t
+
∂Q
∂ζ

∂x3

∂t
, (5.13.10)

and then

∂G
∂t

=
∂Q
∂t

− U sin(ωt+ φ)
∂Q
∂ξ

. (5.13.11)

Similarly, we find that

∂G
∂x

=
∂Q
∂ξ

. (5.13.12)

Substituting these expressions into (5.13.5) and using expression (3.7.5)
for the Laplacian, we derive a diffusion equation,

1

κ

∂Q
∂t

=
∂2Q
∂ξ2

+
∂2Q
∂η2

+
∂2Q
∂ζ2

+
1

κ
δ(ξ) δ(η) δ(ζ) δ(t). (5.13.13)

The well-known solution of this equation is

Q(ξ, η, ζ, t) =
1

(4πκt)3/2
exp

(
− ξ2 + η2 + ζ2

4κt

)
. (5.13.14)
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Substituting the expressions for ξ, η, and ζ in terms of x, y, z and t,
we obtain the Green’s function

G(x, y, z, t) = 1

(4πκt)3/2
exp

(
− (x+ δ cos(ωt+ φ))2 + y2 + z2

4κt

)
,

(5.13.15)

where δ = U/ω is the amplitude of the displacement.

To obtain an expression for steady streaming flow with velocity U ,
we set φ = 1

2π and take the limit as ω tends to zero to find that
δ cos(ωt+ φ) → −Ut.

Exercise

5.13.1 Confirm the limit discussed in the last paragraph of this section.

5.14 Green’s functions

The Green’s function of the convection–diffusion equation in d dimen-
sions, denoted by G, satisfies the equation

∂G
∂t

+ u ·∇G = ∇ · (D ·∇G) + δd(x) δ(t), (5.14.1)

where u is a specified velocity field, D is a symmetric diffusivity ten-
sor, δd is the d-dimensional Dirac delta function, and δ is the one-
dimensional Dirac delta function. The Green’s function has units of
1/Ld, where L is a specified length.

For an isotropic medium, D = D I, where D is the scalar diffusivity
and I is the identity matrix.

5.14.1 Convected coordinates

It is beneficial to introduce convected contravariant coordinates, de-
noted as ξi. The Green’s function can be regarded as a function of ξ1,
ξ2, ξ3, and t,

G(x, y, z, t) = Q(ξ1, ξ2, ξ3, t). (5.14.2)
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The transformation is designed so that equation (5.14.1) becomes

∂Q
∂t

= ∇̂ · (D̂ · ∇̂Q) + δd(ξ) δ(t), (5.14.3)

where the gradient ∇̂ operates with respect to ξ = (ξ1, ξ2, ξ3), re-
garded as Cartesian coordinates in parameter space,

D̂ = F−1 ·D · F−T, FT = ∇̂x, F−T = ∇ξ, (5.14.4)

the superscript −1 denotes the inverse, and the superscript −T denotes
the inverse of the transport. The deformation gradient, F, is defined
such that

Fij =
∂xi
∂ξj

, (5.14.5)

where x1 = x, x2 = y, and x2 = z.

Since the coordinates are convected,

u =
(∂x
∂t

)
ξ

(5.14.6)

and

∂uj
∂xi

=
∂uj
∂ξm

∂ξm
∂xi

=
∂

∂t

( ∂xj
∂ξm

)
ξ
F−T
im = F−T

im

(∂Fjm

∂t

)
ξ
, (5.14.7)

which shows that

∇u = F−T ·
(∂FT

∂t

)
ξ
, (∇u)T =

(∂F
∂t

)
ξ
· F−1. (5.14.8)

5.14.2 Homogeneous deformation

In the case of a homogeneous deformation, the deformation gradient
F depends on time alone such that

x = F(t) · ξ, (5.14.9)
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in agreement with (5.14.5). It can be shown that the solution of
(5.14.3) is given by

Q(ξ, t) =
1

2dπddet(L)
exp

(
− 1

2
ξ · L−1 · ξ

)
, (5.14.10)

where

L(t) = 2

∫ t

0

D̂(t′) dt′. (5.14.11)

Substituting

ξ = F−1 · x, (5.14.12)

we obtain the final expression

G(x, t) = 1

2dπddet(L)
exp

(
− 1

2
x · F−T · L−1 · F−1 · x

)
. (5.14.13)

Specific cases will be discussed in the remainder of this chapter.

Exercise

5.14.1 Simplify (5.14.13) for a time-independent deformation gradient,
F.

5.15 Point source in simple shear flow

Consider the temperature field generated by a two-dimensional point
source of heat or mass located at the origin of the xy plane, in the
presence of a simple shear flow flow. The velocity components along
the x and y axes are given by

ux = a y, uy = 0, (5.15.1)

where a is the shear rate. The source is activated impulsively at the
origin of time, t = 0, by sending an electrical signal through a wire.
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The induced temperature field, G(x, y, t), is the Green’s function of
the associated singularly forced two-dimensional convection–diffusion
equation,

∂G
∂t

+ ay
∂G
∂x

= D (
∂2G
∂x2

+
∂2G
∂y2

) + δ(x) δ(y) δ(t), (5.15.2)

where δ is the one-dimensional Dirac delta function and D is the
medium thermal diffusivity.

5.15.1 Convected oblique rectilinear coordinates

To compute the Green’s function, we introduce a pair of convected
oblique rectilinear contravariant coordinates, ξ and η, defined by

x = ξ + τη, y = η, (5.15.3)

where τ = at. The inverse transformation is

ξ = x− τy, η = y. (5.15.4)

Since

φ ≡
(∂x
∂t

)
ξ,η

= u, (5.15.5)

the convected coordinates are confirmed to follow material point par-
ticles moving in straight paths under the influence of the simple shear
flow. Comparing expressions (5.15.3) and (5.15.4) with those shown in
(3.7.1) for canonical oblique rectilinear coordinates, we find that

β = τ. (5.15.6)

We recall that β(t) = tanφ, where the evolving angle φ is defined in
Figure 4.6.1.

The deformation gradient is given by

F ≡
[
∂x/∂ξ ∂x/∂η
∂y/∂ξ ∂y/∂η

]
=

[
1 τ
0 1

]
. (5.15.7)
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The inverse and the transpose of the inverse of the deformation gradient
are given by

F−1 =

[
1 −τ
0 1

]
, F−T =

[
1 0

−τ 1

]
. (5.15.8)

Setting D = DI for isotropic diffusion, we compute from (5.14.4)

D̂ = F−1 ·D · F−T = D
[
1 + τ 2 −τ
−τ 1

]
, (5.15.9)

where D is the scalar diffusivity.

The Green’s function can be regarded either a function of x, y, t
or a function of ξ, η, t,

G(x, y, t) = Q(ξ, η, t). (5.15.10)

Using the chain rule, we find that

∂G
∂t

=
∂Q
∂t

+
∂Q
∂ξ

∂ξ

∂t
+
∂Q
∂η

∂η

∂t
=
∂Q
∂t

− aη
∂Q
∂ξ

. (5.15.11)

Similarly, we find that

∂G
∂x

=
∂Q
∂ξ

. (5.15.12)

Substituting these expressions into (5.15.2) and using expression (3.7.5)
for the Laplacian in oblique rectilinear coordinates, repeated below for
convenience,

∇2f = (1 + β2)
∂2f

∂ξ2
− 2 β

∂2f

∂ξ∂η
+
∂2f

∂η2
, (5.15.13)

we derive a diffusion equation,

1

D
∂Q
∂t

= (1 + τ 2)
∂2Q
∂ξ2

− 2 τ
∂2Q
∂ξ∂η

+
∂2Q
∂η2

+
1

D δ(ξ) δ(η) δ(t)

(5.15.14)
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which can be expressed in the compact form

∂Q
∂t

= ∇̃ · (D̂ · ∇̂Q) + δ(ξ) δ(η) δ(t), (5.15.15)

where D̂ is given in (5.15.9) and ∇̂ = (∂/∂ξ, ∂/∂η).

5.15.2 Solution in convected coordinates

To solve equation (5.15.15), we follow the procedure outlined in Section
5.6 and introduce the matrix

L(t) ≡ 2

∫ t

0

D̂(t′) dt′ = 2 tD
[
1 + 1

3
τ 2 −1

2
τ

−1
2
τ 1

]
, (5.15.16)

its determinant

det(L) = (2tD)2 (1 +
1

12
τ 2), (5.15.17)

and its inverse,

L−1 =
1

det(L)

[
1 1

2
τ

1
2
τ 1 + 1

3
τ 2

]
. (5.15.18)

According to (5.14.10), the solution of equation (5.15.14) is given by

Q(ξ, η, t) =
1

2π
√
det(L)

exp(− 1

2D ξ · L
−1 · ξ), (5.15.19)

where ξ = (ξ, η). Making substitutions, we find that

Q(ξ, η, t) =
1

4πDt
1√

1 + 1
12
τ 2

×exp
(
− 1

4Dt
(ξ + 1

2
τη)2

1 + 1
12
τ 2

)
exp

(
− 1

4Dt η
2
)
. (5.15.20)

Substituting the expressions for ξ and η in terms of x, y and t, we
obtain the Green’s function

G(x, y, t) = 1

4πDt
1√

1 + 1
12
a2t2

×exp
(
− 1

4Dt
(x− 1

2
aty)2

1 + 1
12
a2t2

)
exp

(
− 1

4Dt y
2
)
.(5.15.21)
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In the absence of shear flow, a = 0, we obtain a well-known expression
for the Green’s function of the unsteady heat conduction equation.

Exercise

5.15.1 Derive (5.15.20) from (5.15.21).

5.16 Point source in oscillatory shear flow

As a further application, we consider the temperature field generated by
a two-dimensional point source of heat located at the origin of the xy
plane in the presence of an oscillatory simple shear flow. The velocity
components along the x and y axes are given by

ux = a sin(ωt+ φ) y, uy = 0, (5.16.1)

where a is the amplitude of the shear rate, ω is the angular frequency,
and φ is the phase shift. The source is activated impulsively at the
origin of time, t = 0, by sending an electrical signal through a wire.

The induced temperature field, G(x, y, t), is the Green’s function of
the associated singularly forced two-dimensional convection–diffusion
equation,

∂G
∂t

+ a sin(ωt+ φ) y
∂G
∂x

= D (
∂2G
∂x2

+
∂2G
∂y2

) + δ(x) δ(y) δ(t), (5.16.2)

where δ is the one-dimensional Dirac delta function and D is the
medium thermal diffusivity.

5.16.1 Convected coordinates

To find the solution, we introduce a pair of convected rectilinear coor-
dinates, ξ and η, defined by

x = ξ + A cos(ωt+ φ) η, y = η, (5.16.3)
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where A = a/ω is a dimensionless parameter. The inverse transforma-
tion is

ξ = x− A cos(ωt+ φ) y, η = y. (5.16.4)

The Green’s function can be regarded as a function of x, y, t, or ξ, η,
t,

G(x, y, t) = Q(ξ, η, t), (5.16.5)

where ξ and η are functions of x, y, and t, by way of (5.16.4).

5.16.2 Solution in convected coordinates

Following the discussion in Section 5.7 of a point source in steady
simple shear flow, we introduce the matrix

D̂ = D
[
1 + A2 cos2(τ + φ) −A cos(τ + φ)
−A cos(τ + φ) 1

]
, (5.16.6)

where τ = ωt, and compute the matrix

L(t) ≡ 2

∫ t

0

D̂(t′) dt′ =
2

ω
D

∫ τ

0

D̂(τ ′) dτ ′. (5.16.7)

Performing the integration, we obtain

L(t) =
2

ω
DΛ, (5.16.8)

where

Λ =

[
Λ11 −A (sin(τ + φ)− sin φ)

−A (sin(τ + φ)− sin φ) τ

]

(5.16.9)

with

Λ11 = (1 +
1

2
A2) τ +

1

4
A2

(
sin(2τ + 2φ)− sin(2φ)

)
. (5.16.10)

The solution is given by formula (5.15.19), repeated below for conve-
nience,

Q(ξ, η, t) =
1

2π
√
det(L)

exp(− 1

2D ξ · L
−1 · ξ), (5.16.11)
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where ξ = (ξ, η). The Green’s function arises by using equations
(5.16.4) to express ξ and η in terms of x and y.

Exercise

5.16.1 Derive the expression for Λ shown in (5.16.9).

5.17 Point source in extensional flow

As a last application of convected coordinates, we consider the temper-
ature field generated by a two-dimensional point source of heat located
at the origin of the xy plane, in the presence of a steady extensional
flow. The velocity components along the x and y axes are given by

ux = ax, uy = −ay, (5.17.1)

where a is a constant identified as the extensional rate. The source is
activated impulsively at the origin of time, t = 0.

The induced temperature field, G, identified as a Green’s func-
tion, satisfies the two-dimensional singularly forced convection–diffusion
equation

∂G
∂t

+ ax
∂G
∂x

− ay
∂G
∂y

= D (
∂2G
∂x2

+
∂2G
∂y2

) + δ(x) δ(y) δ(t),

(5.17.2)

where δ is the one-dimensional Dirac delta function and D is the
medium thermal diffusivity.

5.17.1 Convected coordinates

To find the solution, we introduce a pair of convected rectilinear coor-
dinates, ξ and η, defined by

x = ξ eat y = η e−at. (5.17.3)

The inverse relations are

ξ = x e−at η = y eat. (5.17.4)
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Since

φ =
(∂x
∂t

)
ξ,η

= u, (5.17.5)

the convected coordinates are the trajectories of material point parti-
cles moving under the influence of the extensional flow. The Green’s
function can be regarded as a function of ξ, η, and t,

G(x, y, t) = Q(ξ, η, t), (5.17.6)

where ξ and η are functions of x, y, and t by way of (5.17.4).

5.17.2 Solution in convected coordinates

Substituting the preceding expressions into the governing equation (5.17.2),
we derive an anisotropic diffusion equation for Q,

1

D
∂Q
∂t

= e−2at ∂
2Q
∂ξ2

+ e2at
∂2Q
∂η2

+
1

D δ(ξ) δ(η) δ(t). (5.17.7)

The solution is given by formula (5.15.19), repeated below for conve-
nience,

Q(ξ, η, t) =
1

2π
√
det(L)

exp(− 1

2D ξ · L
−1 · ξ), (5.17.8)

where ξ = (ξ, η),

D̂ = D
[
e−2at 0
0 e2at

]
(5.17.9)

and

L ≡ 2

∫ t

0

D̂(t′) dt′ =
1

a
D

[
1− e−2at 0

0 e2at − 1

]
. (5.17.10)

The Green’s function arises by using equations (5.17.4) to express ξ
and η in terms of x and y.

Exercise

5.17.1 Compute and discuss the time dependence of the determinant
of the matrix L.
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Chapter 6

Surface coordinates

A pair of orthogonal or non-orthogonal, rectilinear or curvilinear sur-
face coordinates and associated covariant base vectors can be defined
over a flat or curved surface embedded in three-dimensional space. In
science and engineering applications, such surfaces are typically iden-
tified with fluid or solid boundaries or interfaces, biological or man-
ufactured membranes, and thin shells. The mathematical apparatus
of curvilinear coordinates discussed in Chapters 4 and 5 in a plane or
three-dimensional space can be adapted to describe surfaces in terms
of surface coordinates.

The analysis leads us naturally to the notion of the surface curva-
ture tensor and to the concept of the Christoffel–Riemann curvature
tensor. Expressions for the directional surface derivative of a scalar,
the surface divergence and gradient of a vector or tensor field, and
other surface differential operators can be derived following familiar
steps. The derivations of such expressions will be pursued and applica-
tions will be discussed in this chapter with reference to the equilibrium
shapes of (a) membranes developing tangential tensions and (b) thin
shells with small but infinitesimal thickness developing tangential ten-
sions, transverse shear tensions, and accompanying bending moments.

6.1 Parametric description and base vectors

A pair of surface curvilinear coordinates, (x1, x2), can be introduced
to describe parametrically a surface in terms of the position vector in
three-dimensional space, as

x(x1, x2), (6.1.1)

325
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n

x1

x2

g

g

1

2

Figure 6.1.1 Illustration of curvilinear coordinates in a surface em-
bedded in three-dimensional space, showing the surface covariant
base vectors, (g1, g2), associated surface contravariant coordi-
nates, (x1, x2), and the unit normal vector, n.

as shown in Figure 6.1.1. For example, the equations

x = a cos ξ, y = b sin ξ cos η, z = c sin ξ sin η, (6.1.2)

describe the surface of a spheroid, where a, b, c are the spheroid semi-
axes and ξ and η are two surface parameters that can be regarded as
surface curvilinear coordinates by setting ξ = x1 and η = x2.

6.1.1 Surface base vectors

The covariant surface base vectors,

g1 =
∂x

∂x1
, g2 =

∂x

∂x2
, (6.1.3)

are tangential to the surface and thus perpendicular to the unit normal
vector, n, at any point,

g1 · n = 0, g2 · n = 0. (6.1.4)

The unit normal vector can be expressed in terms of the outer product
of the two surface base vectors,

n =
1

|g1 × g2|
g1 × g2. (6.1.5)

The covariant surface metric coefficients,

gij ≡ gi · gj , (6.1.6)
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can be accommodated in the 2× 2 matrix denoted by g.

6.1.2 Surface metric

The surface metric coefficient associated with the covariant base vec-
tors is given by

J = (g1 × g2) · n = |g1 × g2|. (6.1.7)

The area of an infinitesimal surface parallelepiped whose sides are de-
scribed by the differential displacements dx1 and dx2 is given by

dS = J dx1dx2. (6.1.8)

Recalling that the determinant of a matrix is equal to the determinant
of the matrix transpose, we write

J 2 = det
(



(g1)x (g1)y (g1)z
(g2)x (g2)y (g2)z
nx ny nz


 ·




(g1)x (g2)x nx

(g1)y (g2)y ny

(g1)z (g2)z nz



)
,(6.1.9)

and obtain

J 2 = det
(


g11 g12 0
g21 g22 0
0 0 1



)
. (6.1.10)

We thus find that

J 2 = g, (6.1.11)

where

g ≡ det(g) = g11g22 − g212 (6.1.12)

is the determinant of the matrix of covariant metric surface coefficient.
Combining (6.1.7) with (6.1.11), we find that

√
g = |g1 × g2|, (6.1.13)

which requires that g be positive.
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6.1.3 Contravariant surface base vectors

The contravariant surface base vectors, g1 and g2, are given by

g1 =
1

J g2 × n, g2 =
1

J n× g1. (6.1.14)

Substituting n = (1/J ) g1×g2 and using the properties of the double
outer product, we obtain

g1 =
1

J 2

(
|g2|2 g1 − (g1 · g2) g2)

)
(6.1.15)

and

g2 =
1

J 2

(
|g1|2 g2 − (g1 · g2) g1)

)
. (6.1.16)

Like the covariant surface vectors, the contravariant surface vectors are
also tangential to the surface and thus perpendicular to the unit normal
vector,

g1 · n = 0, g2 · n = 0. (6.1.17)

Conversely, the covariant surface vectors can be recovered from the
contravariant surface vectors using the relations

g1 = J g2 × n, g2 = J n× g1. (6.1.18)

By construction, gi · gj = δij for i, j = 1, 2, where δij is Kronecker’s
delta.

6.1.4 Contravariant metric coefficients

The surface contravariant metric coefficients,

gij ≡ gi · gj (6.1.19)

for i, j = 1, 2, can be accommodated in the 2×2 matrix denoted by γ.
Working as in Chapter 4, we find that the matrix of covariant surface
coefficients is the inverse of the matrix of the contravariant surface
coefficients, and vice versa

γ = g−1. (6.1.20)
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Consequently,

g11 =
g22
g
, g22 =

g11
g
, g12 = −g12

g
, (6.1.21)

where g = det(g).

6.1.5 One-third orthogonality

The triplet (g1, g2,n) defines a system of partially orthogonal local
directions at a point on a surface, as shown in Figure 6.1.1. The
triplet (g1, g2,n) defines another system of partially orthogonal local
directions. We may introduce the arc length measured normal to the
surface at a point, x3, and regard x1, x2, x3 and x1, x2, x

3 as partially
orthogonal spatial coordinates defined over the surface and extended
off the surface into three-dimensional space.

6.1.6 First fundamental form of a surface

The differential of the position vector in a surface can be expressed in
terms of the surface covariant base vectors as

dx = gi dx
i, (6.1.22)

where summation is implied over the repeated index, i. The first funda-
mental form of the surface is an expression for the square of the length
of the differential vector,

dx · dx = gij dx
i dxj , (6.1.23)

where summation is implied over the repeated indices, i and j.

In standard differential geometry notation,

E ≡ g11, F ≡ g12 = g21, G ≡ g22. (6.1.24)

Consequently

g ≡ det(g) = EG− F 2. (6.1.25)
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Exercises

6.1.1 Derive expressions for the covariant base vectors over a spheroid.

6.1.2 Prove relation (6.1.20).

6.2 Projection tensor

To extract the tangential component of a general vector or operator
defined over a surface, we multiply it with a projection tensor defined
as

P ≡ I− n⊗ n, (6.2.1)

where I is the identity matrix. In index notation,

Pij = δij − ninj . (6.2.2)

The projection tensor is sometimes called the surface identity tensor.

By construction, the surface projection tensor is symmetric, that is, it
is equal to its transpose.

Since P · n = 0, the normal vector, n, is an eigenvector of P with
zero corresponding eigenvalue. Any tangential vector is an eigenvector
with unity corresponding eigenvalue.

6.2.1 Conjugate normal planes

We may introduce two perpendicular normal planes at a chosen point
defined by two mutually orthogonal unit tangential vectors, t1 and t2,
as shown in Figure 6.2.1, where |t1| = 1, |t2| = 1, and

t1 · t2 = 0. (6.2.3)

The projection tensor is given by

P = t1 ⊗ t1 + t2 ⊗ t2 (6.2.4)

for any pair t1 and t2 subject to the aforementioned restrictions. We
may confirm that the normal vector, n, is an eigenvector of P with
zero corresponding eigenvalue, P · n = 0. Moreover,

P · t1 = t1, P · t2 = t2, (6.2.5)
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t

n

t

1

2

Figure 6.2.1 Illustration of two perpendicular normal planes defined
by two mutually orthogonal unit tangential vectors, t1 and t2.

which shows that t1 and t2 are eigenvectors with corresponding unit
eigenvalues.

6.2.2 Normal and tangential vector components

The normal component of an arbitrary vector, a, defined over a surface
is a · n, and the tangential component is

P · a = n× a× n. (6.2.6)

The equivalence of the two expressions in this equation can be proved
readily working in index notation. Consequently, we may write

a = n (n · a) +P · a = a · (n⊗ n) +P · a, (6.2.7)

expressing a normal-tangent decomposition.

6.2.3 Tangential gradient operator

The gradient operator, ∇, may likewise be resolved into normal and
tangential components,

∇ = n (n ·∇) +P ·∇ , (6.2.8)

where the normal component expresses a derivative along n and the
tangential component encapsulates derivatives normal to n. For con-
venience, we define the tangential component of the gradient

∇̂ ≡ P ·∇ . (6.2.9)
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We will see that the tangential gradient can operate on scalars, vectors,
and tensors as an inner product, outer product, or tensor product.

6.2.4 Projection tensor in surface coordinates

We may refer to surface curvilinear coordinates and corresponding base
vectors, as shown in Figure 6.1.1, and expand the projection tensor as

P = P ij gi ⊗ gj, (6.2.10)

where gj are covariant surface base vectors and P
ij are the contravari-

ant components of P.

Projecting equation (6.2.10) onto a covariant base vector, gm,
where m is a free index, and recalling that gj ·gm = δjm and P ·gm =
gm, we find that

gm = P im gi. (6.2.11)

Projecting this equation onto gn, where n is another free index, we find
that

gm · gn ≡ gmn = P nm. (6.2.12)

This expression shows that

P = gij gi ⊗ gj. (6.2.13)

In the case of orthogonal coordinates, we recover (6.2.4).

Working in a similar fashion, we find that the tangential projection
tensor can be expanded in four ways as

P = gij gi ⊗ gj = gij g
i ⊗ gj = gi ⊗ gi = gi ⊗ gi, (6.2.14)

where summation is implied over the repeated indices, i and j. These
expansions reveal that the projection tensor P is, in fact, the surface
metric tensor, which is the counterpart of the identity tensor in two or
three dimensions.
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Exercise

6.2.1 Derive the last two expressions in (6.2.14).

6.3 Surface curvatures

Consider the planar intersection of a surface with each one of the two
mutual perpendicular planes defined by the unit vectors t1 or t2, as
shown in Figure 6.2.1, where t1 · t2 = 0. Now introduce the arc
lengths, ℓ1 and ℓ2, measured over the surface along the intersections in
the directions of t1 or t2.

6.3.1 Local variation of the normal vector

The derivatives of the unit normal vector with respect to arc length,
∂n/∂ℓ1 and ∂n/∂ℓ2, are tangential vectors with components along t1
and t2, but not along n,

∂n

∂ℓ1
= κ1 t1 + κ12 t2,

∂n

∂ℓ2
= κ21 t1 + κ2 t2, (6.3.1)

where κ1, κ2, κ12, and κ21 are curvature coefficients. To explain the
absence of n from the right-hand side of (6.3.1), we note that, because
the normal vector n is a unit vector,

∂(n · n)
∂ℓ1

= 0,
∂(n · n)
∂ℓ2

= 0, (6.3.2)

and thus

n · ∂n
∂ℓ1

= 0, n · ∂n
∂ℓ2

= 0, (6.3.3)

which shows that the normal components of the derivatives ∂n/∂ℓ1
and ∂n/∂ℓ2 are zero.

6.3.2 Curvature coefficients

Projecting the first equation in (6.3.1) on t2 and the second equation
on t1, we find that

κ12 =
∂ n

∂ℓ1
· t2, κ21 =

∂ n

∂ℓ2
· t1. (6.3.4)
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Since t1 and t2 are fixed vectors regarded as unit vectors of a local
Cartesian system, we may write

κ12 =
∂ (n · t2)
∂ℓ1

=
∂ n2

∂ℓ1
κ21 =

∂ (n · t1)
∂ℓ2

=
∂ n1

∂ℓ2
, (6.3.5)

where n1 is component of n in the direction of t1 and n2 is component
of n in the direction of t2.

Moreover, we may write t2 = ∂x/∂ℓ2 evaluated at the chose surface
point, and then

κ12 =
∂ n

∂ℓ1
· ∂ x
∂ℓ2

=
∂

∂ℓ1

(
n · ∂x

∂ℓ2

)
− n · ∂2 x

∂ℓ1∂ℓ2
. (6.3.6)

Because n is normal to the tangential vector ∂x/∂ℓ2, the first term
on the right-hand side is zero. Working similarly for κ21, we derive an
analogous expression and conclude that

κ12 = κ21 = −n · ∂2 x

∂ℓ1∂ℓ2
. (6.3.7)

6.3.3 Matrix of curvature coefficients

The four coefficients κ1, κ2, κ12, and κ21 can be collected in a sym-
metric matrix denoted by

κ =

[
κ1 κ12
κ21 κ2

]
. (6.3.8)

Because κ is symmetric, it has real eigenvalues and an orthogonal pair
of eigenvectors indicating the directions of principal curvatures in a
tangential plane.

We will see that the trace and the determinant of this matrix express
intrinsic properties of the surface in that they are independent of the
orientation of the two perpendicular planes.

6.3.4 Directional curvatures

The coefficients κ1 and κ2 in (6.3.1) are the curvatures of the inter-
sections of the surface with each one of the two mutual perpendicular
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planes. Projecting the first equation in (6.3.1) into t1 and the second
equation onto t2, we find that

κ1 =
∂ n

∂ℓ1
· t1, κ2 =

∂ n

∂ℓ2
· t2. (6.3.9)

Since t1 and t2 are fixed vectors, we may write

κ1 =
∂ (n · t1)
∂ℓ1

=
∂ n1

∂ℓ1
κ2 =

∂ (n · t2)
∂ℓ2

=
∂ n2

∂ℓ2
, (6.3.10)

where n1 is component of n in the direction of t1 and n2 is component
of n in the direction of t2.

6.3.5 Arbitrary directional curvature

It is helpful to introduce the tangential differentiation operators

t1 ·∇ =
∂

∂ℓ1
, t2 ·∇ =

∂

∂ℓ2
, (6.3.11)

and write

κ1 = (t1 ·∇n) · t1, κ2 = (t2 ·∇n) · t2, (6.3.12)

and

κ12 = (t1 ·∇n) · t2, κ21 = (t2 ·∇n) · t1, (6.3.13)

where ℓ1 and ℓ2 are arc lengths measured along the intersections in the
directions of t1 or t2.

Now we consider an arbitrary unit tangent vector, tλ, in the plane
of t1 and t2, given by

tλ =
1√

1 + λ2
(t1 + λt2), (6.3.14)

where λ is a an arbitrary positive parameter. The orthogonality con-
straint t1 · t2 = 0 guarantees that tλ is a unit vector, tλ · tλ = 1.
The curvature of the intersection of the surface with the corresponding
normal vector is given by

κλ =
∂ n

∂ℓλ
· tλ = (tλ ·∇n) · tλ, (6.3.15)
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where ℓλ is the arc length measured in the direction of tλ. Substituting
(6.3.14) into the right-hand side, and using (6.3.12) and (6.3.13), we
obtain

κλ =
1

1 + λ2
(κ1 + λ2κ2 + λ 2κ12). (6.3.16)

When λ = 0 or ∞, we recover κ1 and κ2.

6.3.6 Mean curvature

The sum of curvatures in two directions corresponding to two arbitrary
values, λ1 and λ2, is

κλ1
+ κλ2

=
1

1 + λ21
(κ1 + λ21κ2 + λ1 2κ12)

+
1

1 + λ22
(κ1 + λ22κ2 + λ2 2κ12). (6.3.17)

Referring to (6.3.14), we find that the directions corresponding to two
values, λ1 and λ2, are mutually orthogonal if λ1λ2 = −1. Substituting
into (6.3.17) λ2 = −1/λ1, we obtain

κλ1
+ κλ2

=
1

1 + λ21
(κ1 + λ21κ2 + λ1 2κ12)

+
λ21

1 + λ21
(κ1 +

1

λ21
κ2 −

1

λ1
2κ12). (6.3.18)

Performing the computations on the right-hand side, we find that

κλ1
+ κλ2

= κ1 + κ2, (6.3.19)

independent of λ1 or λ2, provided that λ1λ2 = −1.

We have found that the mean curvature of the surface at an arbi-
trary point is

κmean =
1

2
trace(κ) =

1

2
(κ1 + κ2), (6.3.20)

independent of the orientation of the two normal planes.
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6.3.7 Principal curvatures

To identify the maximum and minimum curvatures, comprising the
principal curvatures, we set dκλ/dλ = 0 and differentiate (6.3.16) with
respect to λ to obtain the equation

−2λ (κ1 + λ2κ2 + λ 2κ12) + (1 + λ2) (2λκ2 + 2κ12) = 0. (6.3.21)

Simplifying, we obtain a quadratic equation for λ,

λ2 + λ
κ1 − κ2
κ12

− 1 = 0. (6.3.22)

The roots can be computed readily using the quadratic formula. The
product of the roots is λ1λ2 = −1, corresponding to mutually orthog-
onal orientations. The sum of the roots is

λ1 + λ2 =
κ2 − κ1
κ12

. (6.3.23)

When κ12 = 0, the roots are λ = 0,∞. Conversely, if κ1 and κ2 are
the principal curvatures, then κ12 = 0.

6.3.8 Confirmation by code

The following Matlab code named curvatures, located in directory
Curvatures of Tunlib, confirms that the principal curvatures com-
puted in this fashion are the eigenvalues of the curvature tensor κ:

kappa1 = 1.4; % arbitrary

kappa2 = -0.2; % arbitrary

kappa12 = 3.0; % arbitrary

kappa = [kappa1, kappa12;

kappa12, kappa2];

kappap = eig(kappa);

b = (kappa1-kappa2)/kappa12;

disc = sqrt(b^2+4);

lam1 = (-b-disc)/2;

lam2 = (-b+disc)/2;
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kappap1 = (kappa1+lam1^2*kappa2+lam1*2*kappa12)/(1+lam1^2);

kappap2 = (kappa1+lam2^2*kappa2+lam2*2*kappa12)/(1+lam2^2);

[kappap(1), kappap(2); kappap1, kappap2]

Running the code generates the following output:

-2.5048 3.7048

-2.5048 3.7048

as prompted by the last line of the code. We see that the principal
curvatures computed in two different ways are the same.

6.3.9 Mean and Gaussian curvatures

Let κmax be the maximum curvature and κmin be the minimum curva-
ture. The mean curvature is

κmean =
1

2
(κmax + κmin). (6.3.24)

The Gaussian curvature is defined as

H ≡ κmax κmin. (6.3.25)

Using the formulas for the directional curvatures, we find that

H =
1

(1 + λ21)
2
(κ1 + λ21κ2 + λ1 2κ12) (λ

2
1κ1 + κ2 − λ1 2κ12),(6.3.26)

where λ1 is a root of (6.3.22). Simplifying, we obtain

H = det(κ) = κ1κ2 − κ212. (6.3.27)

We recall that, if κ1 and κ2 are the principal curvatures, then κ12 = 0.

Exercise

6.3.1 Explain why the Gaussian curvature of a sphere of radius a is
H = 1/a2, whereas the Gaussian curvature of a cylinder is zero. Discuss
whether the Gaussian curvature of a torus is also zero.
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6.4 Curvature tensor

The curvature tensor is defined with reference to the principal curva-
tures, κmax and κmin, and associated unit tangential vectors tmax and
tmin, as

B ≡ κmax tmax ⊗ tmax + κmin tmin ⊗ tmin. (6.4.1)

By definition, the curvature tensor is symmetric, that is

B = BT, (6.4.2)

where the superscript T denotes the matrix transpose.

In the literature of differential geometry, the negative of the curva-
ture tensor is employed,

b = −B. (6.4.3)

According to this alternative definition, the curvature of a sphere is
negative, or else the direction of the unit normal vector, n, is reversed
to point toward the center.

By construction, the tangential vectors tmax and tmin, and the unit
normal vector, n, are the eigenvectors of the curvature tensor with
corresponding eigenvalues κmax, κmax, and 0,

B · tmax = κmax tmax, B · tmin = κmin tmin,

B · n = 0. (6.4.4)

Because of the presence of a zero eigenvalue, the determinant of B is
zero, that is, the curvature tensor is singular.

6.4.1 Mean curvature

The mean curvature of the surface at a point is half the trace of the
curvature tensor at that point,

κm =
1

2
trace(B). (6.4.5)

With reference to (6.4.1), because tmax and tmin are unit vectors, the
traces of the tensors tmax ⊗ tmax and tmin ⊗ tmin are both equal to
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unity, while the trace of tensor tmax ⊗ tmin, which is equal to the inner
product tmax · tmin, is zero.

6.4.2 Spectral decomposition

We may arrange the eigenvectors at the columns of an orthogonal
matrix

U ≡




↑ ↑ ↑
tmax tmin n

↓ ↓ ↓


 , (6.4.6)

and construct the curvature tensor as

B = U ·Λ ·UT, (6.4.7)

where

Λ ≡



κmax 0 0
0 κmin 0
0 0 0


 (6.4.8)

is the diagonal matrix of eigenvalues. Orthogonality ensures thatU−1 =
UT.

6.4.3 Curvature tensor in arbitrary orthogonal tangential coordinates

With reference to Figure 6.2.1 and an arbitrary pair of mutually orthog-
onal unit vectors t1 and t2, the curvature tensor takes the extended
form

B ≡ κ1 t1 ⊗ t1 + κ2 t2 ⊗ t2 + κ12 t1 ⊗ t2 + κ21 t2 ⊗ t1. (6.4.9)

Because κ12 = κ21, as discussed in Section 6.3, the symmetry of the
curvature tensor is guaranteed.

6.4.4 Curvature tensor

in terms of the surface gradient of the normal vector

Using equations (6.3.1), we find that

t1 ·B = κ1 t1 + κ12 t2 =
∂n

∂ℓ1
,

t2 ·B = κ21 t1 + κ2 t2 =
∂n

∂ℓ2
. (6.4.10)
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These relations demonstrate that

P ·B = ∇̂n ≡ ∇̂⊗ n, (6.4.11)

where P = t1 ⊗ t1 + t2 ⊗ t2 is the tangential projection operator and

∇̂ ≡ P ·∇ (6.4.12)

is the tangential gradient operator. In fact,

n · ∇̂n = n ·P ·∇n = 0 (6.4.13)

because n ·P = 0, and

(∇̂n) · n = 0 (6.4.14)

because of the constant (unit) length of the unit normal vector. Con-
sequently, we may write

B = P ·∇n = ∇̂n. (6.4.15)

This equation defines uniquely the curvature tensor in terms of tangen-
tial derivatives of the components of the normal vector.

The Cartesian components of the curvature tensor , indicated by
Greek subscripts, are given by

Bα = Pαγ
∂nβ

∂xγ
, (6.4.16)

where summation is implied over the repeated index, γ.

The mean curvature is given by

κm =
1

2
trace(B) =

1

2
P : ∇n. (6.4.17)

In Cartesian coordinates, the double dot product indicated by the colon
(:) denotes the sum of the products of all corresponding elements of
the matrices on either side.
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6.4.5 Regularized curvature tensor

To prevent the occurrence of the zero eigenvalue, we may introduce a
regularized curvature tensor defined as

B̂ ≡ B+ κn n⊗ n, (6.4.18)

where κn is an arbitrary constant with dimensions of inverse length.
By construction, tmax, tmin, and n are eigenvectors of the regularized
curvature tensor with corresponding eigenvalues κmax, κmin, and κn.
The Gaussian curvature is given by

H =
1

κn
det(B̂) = κ1κ2 − κ212 = det(κ). (6.4.19)

As expected, the arbitrary constant κn does not appear in the final
result.

6.4.6 Numerical evaluation

To evaluate the curvature tensor at a point at a surface, we may con-
sider the variation of the Cartesian components of the position vector,
x, and unit normal vector, n, along two generally non-orthogonal sur-
face curvilinear coordinates, ξ and η, and require that

∂n

∂ξ
=
∂x

∂ξ
·B, ∂n

∂η
=
∂x

∂η
·B. (6.4.20)

Appending to these vector equations the constraint n·B = 0, we derive
three systems of three linear algebraic equations for the three columns
of B.

Exercise

6.4.1 Explain why B = κ1P + (κ2 − κ1) t2 ⊗ t2, where P is the
tangential projection tensor.
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6.5 Curvature tensor in surface coordinates

We may refer to surface curvilinear coordinates and associated surface
base vectors, as discussed in Section 6.1, and introduce a representation
for the curvature tensor in terms of covariant or contravariant surface
base vectors.

6.5.1 Contravariant components

We may introduce the expansion

B = Bij gi ⊗ gj, (6.5.1)

where Bij are the pure contravariant components of the curvature ten-
sor, B. Projecting both sides of this equation from the left onto a
contravariant base vector, gm, where m is a free index, using equation
(6.4.15) stating that B = ∇̂n, and setting gm · gi = δij , we obtain

gm ·B = gm ·∇n =
∂ n

∂xm
= Bmj gj. (6.5.2)

Projecting both sides of this vectorial equation onto gn, where n is a
free index, we obtain

Bmn =
∂ n

∂xm
· gn = −∂ g

n

∂xm
· n. (6.5.3)

The last expression shows that the component of the derivative ∂gn/∂xm
in the direction of the normal vector, n is −Bmn.

Equation (6.5.3) can be restated as

Bmn = − ∂gn

∂xm
· n = − ∂2 x

∂xm∂xn
· n = −∂ g

m

∂xn
· n = Bnm, (6.5.4)

which confirms that the matrix of contravariant components of the
curvature tensor is symmetric,

Bmn = Bnm. (6.5.5)

The symmetry of the pure contravariant components is dictated by the
symmetry of the curvature tensor itself, B.
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6.5.2 Covariant components

We may also expand

B = Bij g
i ⊗ gj, (6.5.6)

where Bij are the covariant components of the curvature tensor, B.
Projecting both sides of this expansion from the left onto gm, where
m is a free index, and working as previously in this section, we obtain

gm ·B = gm ·∇n =
∂ n

∂xm
= Bmj g

j. (6.5.7)

Projecting both sides of this equation onto gn, where n is a free index,
we obtain

Bmn =
∂ n

∂xm
· gn = −∂ gn

∂xm
· n. (6.5.8)

This expression shows that the component of the derivative ∂gn/∂x
m

in the direction of the normal vector, n, is −Bmn.

Equation (6.5.8) can be restated as

Bmn = −∂ gn

∂xm
· n = − ∂2 x

∂xm∂xn
· n = −∂ gm

∂xn
· n = Bnm, (6.5.9)

which confirms that the matrix of covariant components of the curva-
ture tensor is symmetric,

Bmn = Bnm. (6.5.10)

The symmetry of the pure covariant components is dictated by the
symmetry of the curvature tensor itself, B.

6.5.3 Mixed components

The curvature tensor can also be expressed in terms on its mixed com-
ponents, B◦j

i and Bi
◦j and associated tensor bases,

B = Bi
◦j gi ⊗ gj, B = B◦j

i gi ⊗ gj. (6.5.11)
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Working as previously in this section, we find that

Bm
◦n =

∂n

∂xm
· gn = −∂ gn

∂xm
· n (6.5.12)

and

B◦n
m =

∂n

∂xm
· gn = −∂ g

n

∂xm
· n. (6.5.13)

These expressions show that −Bm
◦n is the component of the derivative

∂gn/∂xm in the direction of the normal vector, n, and B◦n
m is the

component of the derivative ∂gn/∂xm in the direction of the normal
vector, n.

Equation (6.5.12) can be restated as

Bm
◦n = −∂ gn

∂xm
· n = − ∂2 x

∂xm∂xn
· n = −∂ g

m

∂xn
· n, (6.5.14)

which demonstrates that

Bm
◦n = B◦m

n . (6.5.15)

This property ensures that the curvature tensor is symmetric,

6.5.4 Mean curvature

The mean curvature is given by

κm =
1

2
trace(B) =

1

2
Bijgij =

1

2
Bijg

ij =
1

2
B◦i

i =
1

2
Bi

◦i, (6.5.16)

where summation is implied over repeated indices, i and j.

Using relations (6.1.21) for g11, g22, and g12 = g21, we find that

κm =
1

2

1

g

(
B11g22 − 2B12 g12 +B22 g11

)
, (6.5.17)

where g = det(g) = g11g22−g212. The right-hand side is defined purely
in terms of covariant base vectors. In terms of standard coefficients L,
M , and N employed in the literature,

L ≡ −B11, M ≡ −B12, N ≡ −B22, (6.5.18)
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expression (6.5.17) for the mean curvature becomes

κm = −1

2

1

g

(
Lg22 − 2M g12 +N g11

)
. (6.5.19)

Denoting

E ≡ g11, F ≡ g12 = g21, G ≡ g22, (6.5.20)

we obtain

κm = −1

2

1

g

(
LG− 2M F +N E

)
, (6.5.21)

where g = EG− F 2.

6.5.5 Gaussian curvature

The Gaussian curvature is given by

H =
1

κn
det(B̂) = g det([Bij ]) = g (B11B22 −B12B21), (6.5.22)

where B̂ is the regularized curvature tensor defined in (6.4.18), and
g = det(g) = g11g22 − g212. Alternative expressions are

H =
1

κn
det(B̂) = det([Bi

◦j ]) = det([B◦j
i ]), (6.5.23)

where B̂ is the regularized curvature tensor defined in (6.4.18), yielding

H = B◦1
1 B

◦2
2 − B◦1

2 B
◦2
1 = B1

◦1B
2
◦2 −B2

◦1B
1
◦2, (6.5.24)

The principal curvatures are the eigenvalues of the 2 × 2 matrix [Bi
◦j ]

or [B◦j
i ]. A further expression is

H =
1

κn
det(B̂) =

1

g
det([Bij]) =

1

g
(B11B22 − B12B21), (6.5.25)

where B̂ is the regularized curvature tensor defined in (6.4.18). In
terms of the coefficients L, N , M defined in (6.5.18), the Gaussian
curvature is given by

H =
1

g
(LN −M2), (6.5.26)
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where g = EG− F 2.

6.5.6 Second fundamental form of a surface

The normal vector changes across the length of an infinitesimal surface
vector, dx by the differential amount

dn =
∂n

∂x1
dx1 +

∂n

∂x2
dx2. (6.5.27)

Projecting this equation onto the corresponding equation

dx = g1 dx
1 + g2 dx

2, (6.5.28)

we obtain we obtain the second fundamental form of the surface,

S ≡ −dn · dx =
∂n

∂xi
· gj dx

i dxj (6.5.29)

or

S = −Bij dx
i dxj , (6.5.30)

where summation is implied over the repeated indices, i, and j.

Working in a similar fashion, we find that the second fundamental
form can be expressed as

S = −Bij dx
i dxj = −Bij dxi dxj , (6.5.31)

and also

S = −Bi
◦j dx

i dxj = −B◦i
j dxi dx

j . (6.5.32)

We observe that the negatives of the components of the curvature
tensor are the coefficients of the second fundamental form of the surface
in contravariant or covariant coordinates.

6.5.7 Weingarten equation

Equation (6.5.13) states that

B◦n
m =

∂n

∂xm
· gn, (6.5.33)
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which implies the Weingarten equation

∂n

∂xm
= B◦n

m gn. (6.5.34)

Note that a normal component is lacking on the right-hand side due to
the unit length of the unit normal vector, n. Now we recall that

B◦n
m = Bmp g

pn, (6.5.35)

where summation is implied over the repeated index, p, and obtain

∂n

∂xm
= Bmp g

p. (6.5.36)

Using relations (6.1.21) for g11, g22, and g12 = g21, we find that

B◦1
1 = B11 g

11 +B12 g
21 =

B11 g22 − B12 g
12

g
=

−LG +MF

g
,

B◦2
1 = B11 g

12 +B12 g
22 =

−B11 g21 +B12 g
11

g
=
LF −ME

g
,

B◦1
2 = B21 g

11 +B22 g
21 =

B21 g22 − B22 g
12

g
=

−MG +NF

g
,

B◦2
2 = B21 g

12 +B22 g
22 =

−B21 g21 +B22 g
11

g
=
MF −NE

g
,

(6.5.37)

where g = EG − F 2. We recall that the principal curvatures are the
eigenvalues of the 2× 2 matrix [B◦j

i ] or [Bj
◦i].

6.5.8 Weingarten curvature matrix

The Weingarten curvature matrix is defined as

W = −
[
B◦1

1 B◦1
2

B◦2
1 B◦2

2

]
=

1

g

[
LG−MF MG−NF
ME − LF NE −MF

]
.(6.5.38)

The principal curvatures are the two eigenvalues of this matrix. Let the
corresponding eigenvectors be w1 = [w11, w12] and w2 = [w21, w22].
It can be shown that the following vectors point into the principal
directions

vmax = w11 g1 + w12 g2, vmin = w11 g1 + w12 g2. (6.5.39)
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We see that all information needed to construct the curvature tensor
is encapsulated in the Weingarten curvature matrix:

B = V ·Λ ·V−1, (6.5.40)

where the superscript −1 denotes the matrix inverse,

V ≡




↑ ↑ ↑
vmax vmin n

↓ ↓ ↓


 , Λ ≡



κmax 0 0
0 κmin 0
0 0 0


 , (6.5.41)

and Λ the diagonal matrix of principal curvatures.

6.5.9 Curvature over triangles

A surface can be divided into triangles defined by three or six nodes
where the unit normal vector is assumed to be known. The curvature
tensor, principal curvatures, and principal directions may be evaluated
at an arbitrary point over a triangle using the formulas derived in Sec-
tions 6.6 and 6.7.

Exercise

6.5.1 Derive expressions (6.5.12) and (6.5.13).

6.6 Curvature over a three-node triangle

A surface can be divided into triangular elements with straight edges
defined by three vertices, xi, for i = 1, 2, 3, as illustrated on the left of
Figure 6.6.1. Note that the vertices are numbered in the counterclock-
wise direction around the element contour.

6.6.1 Parametric representation

To describe the element parametrically, we map it to a standard right
isosceles triangle in the ξη parametric plane, as shown in Figure 6.6.1.
The first element node is mapped to the origin, ξ = 0, η = 0, the
second to the point ξ = 1, η = 0 on the ξ axis, and the third to the
point ξ = 0, η = 1 on the η axis.
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Figure 6.6.1 A three-node triangle in three-dimensional space is
mapped to a right isosceles triangle in the ξη parametric plane.

The mapping from the physical to the parametric plane is mediated
by the linear expansion

x = x1 ψ1(ξ, η) + x2 ψ2(ξ, η) + x3 ψ3(ξ, η), (6.6.1)

where ψi(ξ, η) are element node interpolation functions satisfying a
familiar cardinal property: ψi = 1 at the ith element node and ψi = 0
at the other two element nodes, so that

ψi(ξj, ηj) = δij (6.6.2)

for i, j = 1, 2, 3, where δij is Kronecker’s delta, and

(ξ1, η1) = (0, 0), (ξ2, η2) = (1, 0), (ξ3, η3) = (0, 1)(6.6.3)

are the coordinates of the vertices in the ξη plane. We find that

ψ1(ξ, η) = ζ, ψ2(ξ, η) = ξ, ψ3(ξ, η) = η, (6.6.4)

where

ζ = 1− ξ − η. (6.6.5)

The trio of variables (ξ, η, ζ) comprise the triangle barycentric coordi-

nates. Physically,

ζ = A1/A, ξ = A2/A, η = A3/A, (6.6.6)
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where A1, A2, and A3 are the areas of the sub-triangles defined by the
field point, x.

Substituting into (6.6.1) the interpolation functions given in (6.6.4),
we obtain a mapping function that is a complete linear function in ξ
and η, consisting of a constant term, a term that is linear in ξ, and a
term that is linear in η,

x = x1 + (x2 − x1) ξ + (x3 − x1) η. (6.6.7)

Setting ξ = 0 and η = 0 reveals the first triangle node, x1.

The unit normal vector is assumed to be provided at the three
nodes. Applying the interpolation formula (6.6.7), we obtain

n = n1 + (n2 − n1) ξ + (n3 − n1) η. (6.6.8)

Note that the three nodal normal vectors, n1, n2, and n3, are normal
to the surface but not necessarily normal to the flat triangle. In this
light, the three-node triangle is regarded as a device for computing the
surface curvature in terms of the three nodal normals.

6.6.2 Surface coordinates and curvature

The parameters ξ and η are now regarded as surface contravariant
coordinates, so that x1 = ξ and x2 = η. We find that

∂x

∂ξ
= x2 − x1,

∂x

∂η
= x3 − x1, (6.6.9)

and perform a tangential projection to set

gξ =
∂x

∂ξ
·P = (x2 − x1) ·P, gη =

∂x

∂η
·P = (x3 − x1) ·P,(6.6.10)

where P = I − n ⊗ n is the tangential projection operator defined in
terms of the position dependent normal vector, n(ξ, η). Moreover, we
find that

∂n

∂ξ
= n2 − n1,

∂n

∂η
= n3 − n1 (6.6.11)

with a discretization error associated with the linear expansion.
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Formulas (6.6.10) and (6.6.11) allow us to compute the two trios
of coefficients L, M , N , and E, F , G, involved in the formulas derived
in Section 6.5. We recall that

E ≡ g11, F ≡ g12 = g21, G ≡ g22, (6.6.12)

and also

−L ≡ Bξξ =
∂n

∂ξ
· gξ = (n2 − n1) · gξ,

−M ≡ Bξη =
∂n

∂ξ
· gη = (n2 − n1) · gη, (6.6.13)

−N ≡ Bηη =
∂n

∂η
· gη = (n3 − n1) · gη.

The base vectors, gξ and gη, are implicit functions of ξ and η by way
of the projection matrix, P. The necessary input includes the positions
and unit normal vectors at the location of the three triangle vertices.
Having these coefficients available allows us to compute the curvature
tensor, mean curvature, and Gaussian curvature using the formulas
derived in Section 6.5.

Exercise

6.6.1 Write a code that generates the mean curvature from the po-
sitions and unit normal vectors at the location of the three triangle
vertices.

6.7 Curvature over a six-node triangle

A surface can be divided into six-node triangles with curved edges de-
fined by three vertex nodes and three edge nodes, as illustrated in
Figure 6.7.1. To describe a triangle in parametric form, we map it from
the physical xyz space to the familiar right isosceles triangle in the ξη
plane, as shown in Figure 6.7.1, as follows:

• The first node is mapped to the origin of the ξη plane, ξ = 0,
η = 0.
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Figure 6.7.1 A curved six-node triangle in three-dimensional space
is mapped to a flat right isosceles triangle in the ξη parametric
plane.

• The second node is mapped to the point ξ = 1, η = 0 on the ξ
axis.

• The third node is mapped to the point ξ = 0, η = 1 on the η
axis.

• The fourth node is mapped to the point ξ = α, η = 0 on the ξ
axis.

• The fifth node is mapped to the point ξ = γ, η = 1− γ on the
hypotenuse of the triangle in the ξη plane.

• The sixth node is mapped to the point ξ = 0, η = β on the η
axis.

The dimensionless geometrical mapping coefficients, α, β, and γ are
defined as

α =
1

1 +
|x4 − x2|
|x4 − x1|

, β =
1

1 +
|x6 − x3|
|x6 − x1|

,

γ =
1

1 +
|x5 − x2|
|x5 − x3|

. (6.7.1)
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6.7.1 Evaluation of the mapping coefficients

The following Matlab function named abc, located in directory Tri-

angle6 of Tunlib, evaluates these coefficients in terms of the vertex
coordinates:

function [al,be,ga] = abc ...

...

(x1,y1,z1 ...

,x2,y2,z2 ...

,x3,y3,z3 ...

,x4,y4,z4 ...

,x5,y5,z5 ...

,x6,y6,z6 ...

)

%--------------------------------------

% compute the parametric representation

% coefficients alpha, beta, gamma

%--------------------------------------

d42 = sqrt( (x4-x2)^2 + (y4-y2)^2 + (z4-z2)^2 );

d41 = sqrt( (x4-x1)^2 + (y4-y1)^2 + (z4-z1)^2 );

d63 = sqrt( (x6-x3)^2 + (y6-y3)^2 + (z6-z3)^2 );

d61 = sqrt( (x6-x1)^2 + (y6-y1)^2 + (z6-z1)^2 );

d52 = sqrt( (x5-x2)^2 + (y5-y2)^2 + (z5-z2)^2 );

d53 = sqrt( (x5-x3)^2 + (y5-y3)^2 + (z5-z3)^2 );

al = 1.0/(1.0+d42/d41);

be = 1.0/(1.0+d63/d61);

ga = 1.0/(1.0+d52/d53);

%-----

% done

%-----

return
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6.7.2 Interpolation functions

The mapping from the physical to the parametric space is mediated by
the vector function

x =

6∑

i=1

xi ψi(ξ, η). (6.7.2)

where xi are the triangle nodes in three-dimensional space. The quadratic
element interpolation functions, ψi(ξ, η), are required to satisfy cardi-
nal interpolation properties requiring that ψi = 1 at the ith element
node and ψi = 0 at the other five nodes. In terms of Kronecker’s delta,
δi,j,

ψi(ξj, ηj) = δi,j (6.7.3)

for i, j = 1, . . . , 6, where

(ξ1, η1) = ( 0, 0 ), (ξ2, η2) = ( 1, 0 ), (ξ3, η3) = ( 0, 1 ),

(ξ4, η4) = (α, 0 ), (ξ5, η5) = ( γ, 1− γ ), (ξ6, η6) = ( 0, β )

(6.7.4)

are the coordinates of the six nodes in the ξη plane.

To derive the ith node interpolation function, we write

ψi(ξ, η) = ai + biξ + ciη + diξ
2 + eiξη + fiη

2, (6.7.5)

and compute the six coefficients, ai–fi, to satisfy the aforementioned
interpolation conditions. The results are shown in Table 6.7.1. The
variable ζ ≡ 1 − ξ − η is zero along the hypotenuse where η = 1 − ξ
and ξ = 1− η.

6.7.3 Evaluation of the mean and Gaussian curvature

The parameters ξ and η are now regarded as surface contravariant
coordinates, so that x1 = ξ and x2 = η.

The following Matlab function, located in directory Triangle6

of Tunlib, returns the mean and Gaussian curvatures at a point over
the triangle determined by specified values of ξ and η based on formula
(6.5.21):
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ψ2 =
1

1− α
ξ
(
ξ − α +

α− γ

1− γ
η
)

ψ3 =
1

1− β
η
(
η − β +

β + γ − 1

γ
ξ
)

ψ4 =
1

α (1− α)
ξ ζ

ψ5 =
1

γ (1− γ)
ξ η

ψ6 =
1

β (1− β)
η ζ

ψ1 = 1− ψ2 − ψ3 − ψ4 − ψ5 − ψ6

Table 6.7.1 Element interpolation functions for a six-node triangle,
where the variable ζ ≡ 1−ξ−η is the third barycentric coordinate.

function [crvm,crvg] = crv6_interp ...

...

(x1,y1,z1 ...

,x2,y2,z2 ...

,x3,y3,z3 ...

,x4,y4,z4 ...

,x5,y5,z5 ...

,x6,y6,z6 ...

...

,vx1,vy1,vz1 ...

,vx2,vy2,vz2 ...

,vx3,vy3,vz3 ...

,vx4,vy4,vz4 ...

,vx5,vy5,vz5 ...

,vx6,vy6,vz6 ...

...

,al,be,ga ...

,xi,eta ...

)
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%========================================

% Compute the mean curvature at the nodes

% of a 6-node triangle

%

% x, y, z: nodal coordinates

% vx, vy, vz: nodal unit normal vector

%========================================

%--------

% prepare

%--------

alc = 1.0-al;

bec = 1.0-be;

gac = 1.0-ga;

alalc = al*alc;

bebec = be*bec;

gagac = ga*gac;

%-------------------------------------------

% compute xi derivatives of basis functions

%-------------------------------------------

dph2 = (2.0*xi-al+eta*(al-ga)/gac)/alc;

dph3 = eta*(be+ga-1.0)/(ga*bec);

dph4 = (1.0-2.0*xi-eta)/alalc;

dph5 = eta/gagac;

dph6 = -eta/bebec;

dph1 = -dph2-dph3-dph4-dph5-dph6;

%-------------------------------------------

% compute eta derivatives of basis functions

%-------------------------------------------

pph2 = xi*(al-ga)/(alc*gac);

pph3 = (2.0D0*eta-be+xi*(be+ga-1.0D0)/ga)/bec;

pph4 = -xi/alalc;
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pph5 = xi/gagac;

pph6 = (1.0D0-xi-2.0D0*eta)/bebec;

pph1 = -pph2-pph3-pph4-pph5-pph6;

%------------------------------------

% compute xi and eta derivatives of x

%------------------------------------

DxDxi = x1*dph1 + x2*dph2 + x3*dph3 + x4*dph4 ...

+ x5*dph5 + x6*dph6;

DyDxi = y1*dph1 + y2*dph2 + y3*dph3 + y4*dph4 ...

+ y5*dph5 + y6*dph6;

DzDxi = z1*dph1 + z2*dph2 + z3*dph3 + z4*dph4 ...

+ z5*dph5 + z6*dph6;

DxDet = x1*pph1 + x2*pph2 + x3*pph3 + x4*pph4 ...

+ x5*pph5 + x6*pph6;

DyDet = y1*pph1 + y2*pph2 + y3*pph3 + y4*pph4 ...

+ y5*pph5 + y6*pph6;

DzDet = z1*pph1 + z2*pph2 + z3*pph3 + z4*pph4 ...

+ z5*pph5 + z6*pph6;

%------------------------------------

% compute xi and eta derivatives of n

%------------------------------------

DvxDxi = vx1*dph1 + vx2*dph2 + vx3*dph3 + vx4*dph4 ...

+ vx5*dph5 + vx6*dph6;

DvyDxi = vy1*dph1 + vy2*dph2 + vy3*dph3 + vy4*dph4 ...

+ vy5*dph5 + vy6*dph6;

DvzDxi = vz1*dph1 + vz2*dph2 + vz3*dph3 + vz4*dph4 ...

+ vz5*dph5 + vz6*dph6;

DvxDet = vx1*pph1 + vx2*pph2 + vx3*pph3 + vx4*pph4 ...

+ vx5*pph5 + vx6*pph6;

DvyDet = vy1*pph1 + vy2*pph2 + vy3*pph3 + vy4*pph4 ...

+ vy5*pph5 + vy6*pph6;

DvzDet = vz1*pph1 + vz2*pph2 + vz3*pph3 + vz4*pph4 ...

+ vz5*pph5 + vz6*pph6;
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%-----------------------------------------------

% compute the first and second fundamental forms

% of the surface and the mean curvature

%-----------------------------------------------

gxx = DxDxi^2 + DyDxi^2 + DzDxi^2;

gee = DxDet^2 + DyDet^2 + DzDet^2;

gxe = DxDxi*DxDet + DyDxi*DyDet + DzDxi*DzDet;

Bxx = DxDxi*DvxDxi + DyDxi*DvyDxi + DzDxi*DvzDxi;

Bee = DxDet*DvxDet + DyDet*DvyDet + DzDet*DvzDet;

Bxe = DxDxi*DvxDet + DyDxi*DvyDet + DzDxi*DvzDet;

L = -Bxx; M = -Bxe; N = -Bee;

E = gxx; F = gxe; G = gee;

g = E*G-F^2;

crvm = -0.5*(L*G - 2.0*M*F + N*E)/g;

crvg = (L*N-M^2)/g;

%-----

% done

%-----

return

6.7.4 Triangle on a sphere

The following Matlab code named crv6, located in directory Trian-

gle6 of Tunlib, calls the functions discussed earlier in this section
to compute the the mean and Gaussian curvature at a point over the
triangle whose vertices lie on the first eighth of a sphere of radius a.
for arbitrary values of ξ and η:

%---

% vertices on one eighth of a sphere

% of radius 'a'

%---
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a = 3.4; % arbitrary

srt = 1/sqrt(2);

sra = srt*a;

x1 = a; y1 = 0.0; z1 = 0.0;

x2 = 0.0; y2 = a; z2 = 0.0;

x3 = 0.0; y3 = 0.0; z3 = a;

x4 = sra; y4 = sra; z4 = 0.0;

x5 = 0.0; y5 = sra; z5 = sra;

x6 = sra; y6 = 0.0; z6 = sra;

%---

% vertex unit normal (exact)

%---

vx1 = 1.0; vy1 = 0.0; vz1 = 0.0;

vx2 = 0.0; vy2 = 1.0; vz2 = 0.0;

vx3 = 0.0; vy3 = 0.0; vz3 = 1.0;

vx4 = srt; vy4 = srt; vz4 = 0.0;

vx5 = 0.0; vy5 = srt; vz5 = srt;

vx6 = srt; vy6 = 0.0; vz6 = srt;

%---

% compute alpha, beta, gamma

%---

[al,be,ga] = abc ...

...

(x1,y1,z1 ...

,x2,y2,z2 ...

,x3,y3,z3 ...

,x4,y4,z4 ...

,x5,y5,z5 ...

,x6,y6,z6 ...

);

%---
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% compute the curvatures

%---

xi = 0.21; % example

eta = 0.12; % example

[crvm,crvg] = crv6_interp ...

...

(x1,y1,z1 ...

,x2,y2,z2 ...

,x3,y3,z3 ...

,x4,y4,z4 ...

,x5,y5,z5 ...

,x6,y6,z6 ...

...

,vx1,vy1,vz1 ...

,vx2,vy2,vz2 ...

,vx3,vy3,vz3 ...

,vx4,vy4,vz4 ...

,vx5,vy5,vz5 ...

,vx6,vy6,vz6 ...

...

,al,be,ga ...

,xi,eta ...

);

format long

[1/a crvm;

1/a^2 crvg]

format short

Running the code generates the following output:

0.29411764705882 0.29411764705882

0.08650519031142 0.08650519031142

In this case, the numerical values for the mean and gaussian curvatures
are precisely the same as the exact values.

If only the three vertex nodes are given, the three edge nodes and
their normals can be computed by interpolation.
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Exercise

6.7.1 Use the code discussed in the text to compute the mean and
gaussian curvatures at a point on a six-node triangle on the surface of
a circular cylinder.

6.8 Curvature tensor and Christoffel symbols

The last expression in (6.5.8) can be rearranged to become

−Bmn =
∂ gm

∂xn
· n (6.8.1)

for m,n = 1, 2. It is instructive to note the similarity between this
relation and the definition of the Christoffel symbols of the second kind
given in (4.9.5), repeated below for convenience,

Γk
mn ≡ ∂ gm

∂xn
· gk. (6.8.2)

In fact, setting g3 = n shows that

Bmn = −Γ3
nm (6.8.3)

in the partially orthogonal coordinates defined by g1, g2, and n. We
may write then

∂ gm

∂xn
≡ Γk

mn gk −Bmn n, (6.8.4)

where the indices vary over 1 and 2. Equation (6.8.4) for surface coor-
dinates is the counterpart of (4.9.3) applicable to volume coordinates.

The last expression in (6.5.13) can be rearranged to give

−B◦n
m =

∂ gn

∂xm
· n. (6.8.5)

We may write then

∂ gn

∂xm
= −Γn

km gk −B◦n
m n, (6.8.6)
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which is the counterpart of (4.9.11) applicable to volume coordinates.

6.8.1 Riemann–Christoffel curvature tensor

Equation (5.8.22), repeated below for convenience,

∂Γk
ij

∂xm
=

∂2 gi

∂xm∂xj
· gk +

∂ gi

∂xj
· ∂ g

k

∂xm
, (6.8.7)

provides us with the derivatives of the Christoffel symbols of the second
kind. Expressing each one of the derivatives in the last term on the
right-hand side in terms of the Christoffel symbols using (6.8.4) and
(6.8.6), we obtain

∂Γk
ij

∂xm
=

∂2 gi

∂xm∂xj
· gk + (Γn

ij gn −Bij n) · (−Γk
pm gp − B◦k

m n).

(6.8.8)

Simplifying the last product, we obtain

∂Γk
ij

∂xm
=

∂2 gi

∂xm∂xj
· gk − Γn

ij Γ
k
nm +Bij B

◦k
m . (6.8.9)

Interchanging the indices j and m, we obtain

∂Γk
im

∂xj
=

∂2 gi

∂xm∂xj
· gk − Γn

im Γk
nj +BimB

◦k
j . (6.8.10)

Subtracting the last two equations and rearranging, we obtain

Rk
◦imj = BijB

◦k
m −BimB

◦k
j , (6.8.11)

where

Rk
◦imj ≡

∂Γk
ij

∂xm
− ∂Γk

im

∂xj
+ Γn

ijΓ
k
nm − Γn

imΓ
k
nj (6.8.12)

are mixed components of the Riemann–Christoffel curvature tensor.

The pure covariant components of the Riemann–Christoffel curva-
ture tensor are given by

Rkimj = gkpRp
◦imj , (6.8.13)
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yielding

Rkimj = BijBmk − BimBjk. (6.8.14)

We observe that

Rmjki = BjiBkm −BjkBim = Rkimj ,

Rikmj = BkjBmi −BkmBji = −Rkimj , (6.8.15)

Rkijm = BimBjk −BijBmk = −Rkimj .

The Riemann–Christoffel curvature tensor discussed in Section 4.12,
admits the expansions

R = Rk
◦jmi gk ⊗ gi ⊗ gj ⊗ gm ⊗ gi

= Rkjmi g
k ⊗ gi ⊗ gj ⊗ gm ⊗ gi. (6.8.16)

Other expansions in terms of mixed or pure contravariant components
can be written.

6.8.2 Surface embedded in three-dimensional space

On a surface described by two curvilinear coordinates presently consid-
ered, the only non-zero pure covariant components of the Riemann–
Christoffel curvature tensor are

R1212 = −R2112 = −R1221 = −R2121. (6.8.17)

Direct substitution shows that

R1212 = B11B22 − B12B21 = det([Bij ]). (6.8.18)

Using the first expression in (6.5.25), we find that

R1212 = gH, (6.8.19)

where H is the Gaussian curvature, which is clearly zero on a flat
surface.

Exercise

6.8.1 Derive expression (5.8.17).
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Figure 6.9.1 Illustration of cylindrical polar surface coordinates,
(ϕ, x), defined with respect to Cartesian coordinates, (x, y, z).

6.9 Surface of a cylinder

Consider the surface of a cylinder of radius a, and introduce orthogonal
cylindrical polar coordinates, (ϕ, x), where ϕ is the azimuthal angle,
as illustrated in Figure 6.9.1. The doublet, (ϕ, x), comprise orthogonal
curvilinear surface coordinates, where x1 = ϕ and x2 = x.

The Cartesian coordinates of the position vector on the surface of
the cylinder are

y = a cosϕ, z = a sinϕ. (6.9.1)

The base unit vectors are

eϕ =




0
− sinϕ
cosϕ


 , ex =




1
0
0


 , (6.9.2)

and the unit normal vector is

n =




0
cosϕ
sinϕ


 . (6.9.3)
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The corresponding covariant base vectors are given by

gϕ = a eϕ, gx = ex. (6.9.4)

The covariant components of the metric tensor are given by

gϕϕ = a2, gϕx = 0, gxϕ = 0, gxx = 1. (6.9.5)

The determinant of the matrix consisting of these metric coefficients is
g = a2. The surface metric coefficient is J =

√
g = a.

The surface contravariant base vectors are given by

gϕ =
1

a
eϕ, gx = ex, (6.9.6)

and the contravariant components of the metric tensor are

gϕϕ =
1

a2
, gϕx = 0, gxϕ = 0, gxx = 1. (6.9.7)

Note that gii = 1/gii, where summation is not implied over the re-
peated index, i.

We find by straightforward differentiation that

∂ gϕ

∂ϕ
= −an, ∂ gϕ

∂x
= 0,

∂ gx

∂ϕ
= 0,

∂ gx

∂x
= 0. (6.9.8)

6.9.1 Christoffel symbols

All surface Christoffel symbols of the second kind turn out to be zero.

6.9.2 Curvature tensor

The covariant components of the surface curvature tensor computed
from (6.5.8) are

Bϕϕ = a, Bϕx = Bxϕ = 0, Bxx = 0. (6.9.9)
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The curvature tensor itself is given by

B = Bϕϕ g
ϕ ⊗ gϕ. (6.9.10)

Making substitutions, we obtain

B =
1

a
eϕ ⊗ eϕ. (6.9.11)

The mean curvature is

κm =
1

2a
. (6.9.12)

Exercise

6.9.1 Compute the principal curvatures and the Gaussian curvature of
a cylindrical surface.

6.10 Surface of a sphere

Consider the surface of a sphere of radius a, and introduce orthogonal
spherical polar coordinates where x1 = θ is the meridional angle and
x2 = ϕ is the azimuthal angle, as shown in Figure 6.10.1. The doublet,
(θ, ϕ), comprise orthogonal curvilinear surface coordinates.

The Cartesian coordinates of the position vector on the surface of
the sphere are

x = a cos θ, y = a sin θ cosϕ, z = a sin θ sinϕ. (6.10.1)

The base unit vectors are

eθ =




− sin θ
cos θ cosϕ
cos θ sinϕ


 , eϕ =




0
− sinϕ
cosϕ


 , (6.10.2)

and the unit normal vector is

n =




cos θ
sin θ cosϕ
sin θ sinϕ


 . (6.10.3)
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Figure 6.10.1 Illustration of spherical polar surface coordinates,
(θ, ϕ), defined with respect to the Cartesian coordinates, (x, y, z)
where θ is the meridional angle and ϕ is the azimuthal angle.

The corresponding covariant base vectors are

gθ =
∂x

∂θ
= a eθ, gϕ =

∂x

∂ϕ
= a sin θ eϕ, (6.10.4)

and the covariant components of the metric tensor are

gθθ = a2, gθϕ = 0,

gϕθ = 0, gϕϕ = a2 sin2 θ. (6.10.5)

The determinant of the matrix consisting of these metric coefficients is
given by

g = a4 sin2 θ (6.10.6)

and the surface metric coefficient is

J =
√
g = a2 sin θ (6.10.7)



D
R
A
F
T

6.10 Surface of a sphere 369

for 0 ≤ θ ≤ π.

The surface contravariant base vectors are

gθ =
1

a
eθ, gϕ =

1

a sin θ
eϕ, (6.10.8)

and the contravariant components of the metric tensor are

gθθ =
1

a2
, gθϕ = 0, gϕθ = 0, gϕϕ =

1

a2 sin2 θ
. (6.10.9)

Note that gii = 1/gii, where summation is not implied over the re-
peated index, i.

We find by straightforward differentiation that

∂ gθ

∂θ
= −an, ∂ gθ

∂ϕ
= a cos θ eϕ. (6.10.10)

Moreover, we find that

∂ gϕ

∂ϕ
= −a sin θ




0
cosϕ
sinϕ


 , ∂ gϕ

∂θ
= a cos θ eϕ. (6.10.11)

6.10.1 Christoffel symbols

Using expression (4.9.5) for the Christoffel symbols of the second kind,
we find that

Γθ
ϕϕ =

∂gϕ

∂ϕ
· gθ (6.10.12)

and then

Γθ
ϕϕ = a sin θ




0
− cosϕ
− sinϕ


 · 1

a




− sin θ
cos θ cosϕ
cos θ sinϕ


 . (6.10.13)

Carrying out the multiplications, we obtain

Γθ
ϕϕ = − sin θ cos θ. (6.10.14)
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Working in a similar fashion, we find that

Γϕ
θϕ =

∂gθ

∂ϕ
· gϕ (6.10.15)

and then

Γϕ
θϕ = a




0
− cos θ sinϕ
cos θ cosϕ


 · 1

a sin θ




0
− sinϕ
cosϕ


 . (6.10.16)

Carrying out the multiplications, we obtain

Γϕ
θϕ = cot θ. (6.10.17)

Working in a similar fashion, we find that

Γϕ
ϕθ =

∂gϕ

∂θ
· gϕ (6.10.18)

and then

Γϕ
ϕθ = a cos θ




0
− sinϕ
cosϕ


 · 1

a sin θ




0
− sinϕ
cosϕ


 . (6.10.19)

Carrying out the multiplications, we obtain

Γϕ
ϕθ = cot θ. (6.10.20)

All other Christoffel symbols of the second kind turn out to be zero.

6.10.2 Curvature tensor

The covariant components of the curvature tensor computed from
(6.5.8) are

Bθθ = a, Bθϕ = Bϕθ = 0, Bϕϕ = a sin2 θ. (6.10.21)

The curvature tensor itself is given by

B = Bθθ g
θ ⊗ gθ +Bϕϕ g

ϕ ⊗ gϕ. (6.10.22)
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Making substitutions, we obtain

B =
1

a

(
eθ ⊗ eθ + eϕ ⊗ eϕ

)
=

1

a
P, (6.10.23)

where P is the tangential projection tensor reflecting the isotropy of
the spherical shape. The mean curvature is κm = 1

a
.

Exercise

6.10.1 Compute the contravariant components of the curvature tensor
over a sphere in the (θ, ϕ) surface coordinates.

6.11 Surface divergence of a vector field

A vector field, u, with tangential and normal components defined over
a surface can be expressed as

u = ui gi + un n = ui g
i + un n, (6.11.1)

where summation is implied over the repeated index i = 1, 2, gi are co-
variant surface base vectors, ui are contravariant surface components,
gi are covariant surface base vectors, ui are covariant surface com-
ponents, un is the normal component of u, and n is the unit normal
vector.

The surface divergence of u is a scalar given by

̺ ≡ ∇̂ · u, (6.11.2)

where ∇̂ = P·∇ is the tangential gradient operator andP = I−∇⊗∇

is the tangential projection operator, as discussed in Section 8.2.

In index notation,

̺ = Pαβ
∂uα
∂xβ

=
∂uα
∂xα

− nαnβ
∂uα
∂xβ

, (6.11.3)

where summation is implied over Greek indices denoting Cartesian co-
ordinates, α, β = 1, 2.3. For example, x1 = x, x2 = y, and x3 = z.
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Using expressions (5.2.1) for the gradient operator restricted to
surface coordinates, we set

̺ = gk · ∂

∂xk
(ui gi + unn) = gk · ∂

∂xk
(ui g

i + unn), (6.11.4)

where summation is implied over the repeated indices i and k in the
range i, k = 1, 2.

Expanding the derivative of the expression between the two equal
sings in (6.11.4), and noting that gk · n = 0, we obtain

̺ = gk · gi
∂ui

∂xk
+ gk · ∂ gi

∂xk
ui + gk · ∂n

∂xk
un. (6.11.5)

Now setting gk · gi = δij in the first term on the right-hand side, and
expressing the last term in terms of the curvature tensor, B, we obtain

̺ =
∂ui

∂xi
+ gk · ∂gi

∂xk
ui + gk · gj Bkjun. (6.11.6)

Both the tangential and normal components of u are involved in this
equation.

6.11.1 Normal motion and mean curvature

Next, we invoke relation (6.8.4) to express the derivative in the sec-
ond term on the right-hand side of (6.11.6) in terms of the Christoffel
symbols of the second kind and the curvature tensor,

∂ gi

∂xk
= Γm

ik gm − Bik n (6.11.7)

for i, k,m = 1, 2. The final result is

̺ =
∂ui

∂xi
+ Γk

ik u
i + gkj Bkj un. (6.11.8)

Now referring to (6.5.16), we set gkjBkj = 2κm and obtain

̺ =
∂ui

∂xi
+ Γk

ik u
i + 2 κm un, (6.11.9)
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where κm is the mean curvature. We see that the normal components,
un, contributes to the surface divergence only in the case of non-zero
mean curvature. This contribution arises in the case of a spherical
interface expanding or contracting with normal velocity un. In terms
of the covariant derivative defined in (4.13.5), equation (6.11.9) the
simple form

̺ = ui,i + 2 κm un, (6.11.10)

where

ui,i =
∂ui

∂xi
+ Γk

ik u
i (6.11.11)

and summation is implied over the repeated indices, i, k = 1, 2.

6.11.2 Cylindrical surface

In the case of a cylindrical surface of radius a, we introduce orthogonal
cylindrical surface coordinates, ϕ and x, as discussed in Section 6.9.
Recalling that all Christoffel symbols are zero, and setting κm = 1/(2a),
we obtain from (6.11.9) the simplified expression

̺ =
∂uϕ

∂ϕ
+
∂ux

∂x
+

1

a
un, (6.11.12)

where uϕ and ux are contravariant components.

We may introduce physical vector components indicated by a caret
associated with the dimensionless unit vectors eϕ and ex, and expand
the vector field u as

u = ûϕ eϕ + ûx ex + ûn n. (6.11.13)

Since gϕ = a eϕ and gx = ex, we find that

uϕ =
1

a
ûϕ, ux = ûx, un = ûn. (6.11.14)

Substituting these expressions into (6.11.12), we obtain

̺ =
1

a

∂ûϕ

∂ϕ
+
∂ûx

∂x
+

1

a
ûn. (6.11.15)
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Only the last term survives in the case of a cylindrical surface expanding
with normal velocity un.

6.11.3 Spherical surface

In the case of a spherical surface of radius a, we introduce orthogonal
surface contravariant coordinates θ and ϕ, as discussed in Section 6.10,
and obtain

̺ =
∂uθ

∂θ
+
∂uϕ

∂ϕ
+ Γϕ

θϕ u
θ +

2

a
un. (6.11.16)

Substituting the expressions for the Christoffel symbols, we find that

̺ =
∂uθ

∂θ
+
∂uϕ

∂ϕ
+ cot θ uθ +

2

a
un, (6.11.17)

which can be rearranged into

̺ =
1

sin θ

∂(sin θ uθ)

∂θ
+
∂uϕ

∂ϕ
+

2

a
un, (6.11.18)

where uθ and uϕ are contravariant components.

We may introduce physical vector components indicated by a caret
associated with the dimensionless unit vectors eθ and eϕ, and expand
the vector field u as

u = ûθ eθ + ûϕ eϕ + ûn n. (6.11.19)

Since gθ = a eθ and gϕ = a sin θ eϕ, we find that

uθ =
1

a
ûθ, uϕ =

1

a sin θ
ûϕ, un = ûn. (6.11.20)

Substituting these expressions into (6.11.17), we obtain

̺ =
1

a

∂ûθ

∂θ
+

1

a sin θ

∂ûϕ

∂ϕ
+

cot θ

a
ûθ +

2

a
ûn, (6.11.21)

which can be rearranged into

̺ =
1

a sin θ

(∂(sin θ ûθ)
∂θ

+
∂ûϕ

∂ϕ

)
+

2

a
ûn. (6.11.22)
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Only the last term survives in the case of a spherical surface expanding
with normal velocity un.

Exercise

6.11.1 Write equation (6.11.10) for a flat interface.

6.12 Surface gradient of a vector field

The surface gradient of a surface vector field, u, possessing tangential
and normal components, is a two-index tensor given by

L ≡ ∇̂ u ≡ ∇̂⊗ u. (6.12.1)

In index notation, the Cartesian components of L are given by

Lαβ = Pαγ
∂uβ
∂xγ

=
∂uβ
∂xα

− nαnγ
∂uβ
∂xγ

, (6.12.2)

where P is the surface projection tensor and summation is implied over
Greek indices denoting Cartesian coordinates. For example, x1 = x,
x2 = y, and x3 = z.

Using expressions (5.2.1) for the gradient operator restricted to
surface coordinates, we set

L = gk ⊗ ∂

∂xk
(ui gi + unn) = gk ⊗ ∂

∂xk
(ui g

i + unn). (6.12.3)

Expanding the derivative of the expression enclosed by parentheses after
the first equal sing, we obtain

L = gk ⊗ gi
∂ui

∂xk
+ gk ⊗ ∂ gi

∂xk
ui

+gk ⊗ ∂n

∂xk
un + gk ⊗ n

∂un
∂xk

. (6.12.4)

Expressing the penultimate term on the right-hand side in terms of the
curvature tensor, we obtain

L = gk ⊗ gi
∂ui

∂xk
+ gk ⊗ ∂gi

∂xk
ui

+gk ⊗ gj Bkjun + gk ⊗ n
∂un
∂xk

. (6.12.5)
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Next, we express the derivative ∂gi/∂x
k on the right-hand side in

terms of the Christoffel symbols of the second kind and the curvature
tensor using (6.8.4), repeated below with redefined indices for conve-
nience,

∂ gi

∂xk
= Γm

ik gm − Bik n (6.12.6)

for i, k,m = 1, 2, and obtain

L = gk ⊗ gi
∂ui

∂xk
+ gk ⊗ gmΓ

m
ik u

i − gk ⊗ nBik u
i

+gk ⊗ gjBkjun + gk ⊗ n
∂un
∂xk

. (6.12.7)

Rearranging, we obtain

L = gk ⊗ gm

( ∂um
∂xk

+ Γm
ik u

i
)

+gk ⊗ gjBkjun + gk ⊗ n
( ∂un
∂xk

− Bik u
i
)
. (6.12.8)

Expressing the term inside the first set of parentheses in terms of the
covariant derivative of a contravariant component, um,k , we obtain the
compact form

L = gk ⊗ gm u
m
,k + gk ⊗ gj Bkjun

+gk ⊗ n
( ∂un
∂xk

−Bik u
i
)
. (6.12.9)

The trace of L is the surface divergence of u,

̺ = trace(L) = δkm u
m
,k + gkj Bkjun, (6.12.10)

as derived previously in (6.11.10).

Exercise

6.12.1 Derive expression (6.12.10) from (6.12.9).
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6.13 Surface divergence of a surface tensor field

A tangential surface tensor field, T, can be expressed in terms of surface
base vectors in four combinations,

T = T ijgi ⊗ gj = T ◦j
i gi ⊗ gj

= T i
◦j gi ⊗ gj = Tij g

i ⊗ gj, (6.13.1)

where gi are covariant and gi are contravariant surface base vectors.
The stipulated absence of normal components on the right-hand side
of (6.13.1) implies that

n ·T = 0, T · n = 0. (6.13.2)

These restrictions can be lifted by straightforward modifications.

6.13.1 Notational inconsistency

An unfortunate notational inconsistency has been introduced to con-
form with standard convention. The ijth element of the tensor T is
denoted as Tij , and the ij covariant component of the same tensor
has also been denoted as Tij. For clarity, the former could have been
denoted as T (i, j); alternatively, Greek indices can be employed.

6.13.2 Surface divergence

The surface divergence of T is a surface vector field possessing tan-
gential and normal components, given by

ψ ≡ ∇̂ ·T, (6.13.3)

where ∇̂ = P·∇ is the tangential gradient operator. In index notation,
the Cartesian components of ψ are given by

ψγ = Pαβ
∂Tαγ
∂xβ

, (6.13.4)

where summation is implied over Greek indices denoting Cartesian co-
ordinates. For example, x1 = x, x2 = y, and x3 = z.
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6.13.3 Resolution into tangential and normal components

Resolving ψ into tangential and normal components, we obtain

ψ = ψjgj + ψnn = ψjg
j + ψnn, (6.13.5)

where ψj are the contravariant surface components, ψj are the covari-
ant surface components, ψn is the normal component, and n is the
unit normal vector.

Using expressions (5.2.1) for the gradient operator restricted to
surface coordinates, we obtain

ψ = gk · ∂

∂xk
(T ij gi ⊗ gj) = gk · ∂

∂xk
(Tij g

i ⊗ gj), (6.13.6)

where summation is implied over the repeated indices, i, j, and k. Four
similar expressions can be written involving the mixed components of
T.

Expanding the derivative in the first expression of (6.13.6), we ob-
tain the expression

ψ =
∂T ij

∂xk
gk · gi ⊗ gj + T ij gk · ∂gi

∂xk
⊗ gj

+T ij gk · gi ⊗
∂gj

∂xk
, (6.13.7)

where gk · gi = δki in the first and last terms on the right-hand side.

Next, we use the properties of Kronecker’s delta and express the last
two derivatives of the covariant base vectors on the right-hand side of
(6.13.7) in terms of the Christoffel symbols of the second kind and the
curvature tensor using (6.8.4), repeated below with renamed indices for
convenience,

∂ gi

∂xk
≡ Γm

ik gm −Bik n. (6.13.8)

Rearranging, we obtain

ψ =
∂T ij

∂xi
gj + T ij Γk

ik gj + T ij Γm
ji gm − T ijBji n. (6.13.9)
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Mutually renaming the indices j and m in the penultimate term on the
right-hand side, we obtain

ψ =
∂T ij

∂xi
gj + T ij Γk

ik gj + T im Γm
mi gj − T ijBji n. (6.13.10)

We have found that

ψ = ψj gj − T ijBji n, (6.13.11)

where

ψj =
∂T ij

∂xi
+ Γk

mk T
mj + Γj

mi T
im. (6.13.12)

are the contravariant components of ψ. In abbreviated notation,

ψj = T ij
,i , (6.13.13)

where the general covariant derivative T ij
,k is defined in (4.14.7) as

T ij
,k =

∂T ij

∂xk
+ Γi

mk T
mj + Γj

mk T
im. (6.13.14)

In summary, the surface divergence of a surface tensor field is given
by

ψ ≡ (P ·∇) ·T = T ij
,i gj − T ij Bji n. (6.13.15)

This expression appears in equilibrium equations governing the shapes
of membranes and shells, as discussed in Sections 6.6–6.8.

Exercise

6.13.1 Derive an expression for the surface divergence over a sphere.
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6.14 Surface gradient of a surface tensor field

A surface tensor field, T, can be expressed in terms of covariant or
contravariant surface base vectors as

T = T ijgi ⊗ gj = T ◦j
i gi ⊗ gj

= T i
◦j gi ⊗ gj = Tij g

i ⊗ gj. (6.14.1)

The surface gradient of T is a three-index tensor given by

N ≡ ∇̂T ≡ ∇̂⊗T, (6.14.2)

where ∇̂ = P·∇ is the tangential gradient operator. In index notation,
the Cartesian components of N are given by

Nαβγ = Pαδ
∂Tβγ
∂xδ

=
∂Tβγ
∂xα

− nαnδ
∂Tβγ
∂xδ

, (6.14.3)

where summation is implied over Greek indices denoting Cartesian co-
ordinates. For example, x1 = x, x2 = y, and x3 = z.

6.14.1 Surface gradient in terms of the curvature

Using expressions (5.2.1) for the gradient operator in surface coordi-
nates and the first expansion in (6.14.1), we set

N = gk ⊗ ∂

∂xk
(T ij gi ⊗ gj). (6.14.4)

Expanding the derivatives, we obtain

N =
∂T ij

∂xk
gk ⊗ gi ⊗ gj

+T ijgk ⊗ ∂ gi

∂xk
⊗ gj + T ijgk ⊗ gi ⊗

∂ gj

∂xk
. (6.14.5)

Next, we express the derivatives ∂ gi/∂x
k and ∂ gj/∂x

k on the right-
hand side in terms of the Christoffel symbols of the second kind and the
curvature tensor using (6.8.4), repeated below with redefined indices
for convenience,

∂ gi

∂xk
= Γm

ik gm −Bik n. (6.14.6)
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Rearranging, we obtain

N =
∂T ij

∂xk
gk ⊗ gi ⊗ gj + Γm

ik T
ijgk ⊗ gm ⊗ gj

−Bik T
ijgk ⊗ n⊗ gj + Γm

jk T
ijgk ⊗ gi ⊗ gm

−Bjk T
ijgk ⊗ gi ⊗ n. (6.14.7)

Rearranging further, we obtain the final expression

N =
(∂T ij

∂xk
+ Γi

mk T
mj + Γj

mk T
im
)
gk ⊗ gi ⊗ gj

−T ij
(
Bik g

k ⊗ n⊗ gj +Bjk g
k ⊗ gi ⊗ n

)
. (6.14.8)

The term enclosed by the last set of parentheses involves the surface
curvature and unit normal vector on the right-hand side.

6.14.2 Surface divergence

The surface divergence of T, is a vector given by

ψ =
(∂T ij

∂xk
+ Γi

mk T
mj + Γj

mk T
im
)
trace(gk ⊗ gi) gj

−T ij
(
Bik trace(g

k ⊗ n) gj +Bjk trace(g
k ⊗ gi)n

)
. (6.14.9)

Setting

trace(gk ⊗ gi) = δki, trace(gk ⊗ n) = 0, (6.14.10)

we recover expression (6.13.11).

Exercise

6.14.1 Derive an expression for the surface gradient over a sphere.

6.15 Surface divergence theorem

Consider a surface patch, P, enclosed by a closed loop, C, and a vector
function of position defined over the surface, u, as shown in Figure
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n

t

C

Pb

Figure 6.15.1 Illustration of a surface patch, denoted by P, en-
closed by a closed loop, denoted by C. A surface divergence
theorem can be established.

6.15.1. The Gauss divergence theorem for a surface provides us with
the identity

∫∫

P

∇̂ · (P · u) dS =

∫

C

b · u dℓ, (6.15.1)

where ∇̂ = P·∇ is the tangential gradient operator, dS is a differential
surface area, ℓ is the arc length measured around C, b is a tangential
unit vector,

b = t× n (6.15.2)

n is the unit vector normal to the surface, and t is the unit vector that
is tangential to the surface and also tangential to C, as shown in Figure
6.15.1. The integrand on the left-hand side of (6.15.1) is the surface
divergence of the tangential part of u.

A proof of the theorem will be presented later in this section in
terms of Stokes’s circulation theorem.

6.15.1 Surface coordinates

In surface curvilinear coordinates, the surface divergence theorem reads

∫∫

P

ui,i dS =

∫

C

bi u
i dℓ, (6.15.3)
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where summation is implied over the repeated index, i. The integrand
on the left-hand side is the ith surface covariant derivative of the ith
contravariant components of u, given by

ui,i =
∂ui

∂xi
+ Γi

ik u
k, (6.15.4)

where summation is implied over the repeated indices, i and k.

6.15.2 Surface tensor field

In the case of a surface tensor field, T, the Gauss divergence theorem
provides us with the identity

∫∫

P

∇̂ · (P ·T) dS =

∫

C

b ·T dℓ. (6.15.5)

The integrand on the left-hand side is the surface divergence of T.

Referring to surface curvilinear coordinates, we invoke expression
(6.13.15) and obtain

∫∫

P

(
T ij
,i gj − T ij Bji n

)
dS =

∫

C

bjT
ji dℓ. (6.15.6)

Note the tangential and normal components inside the integral on the
left-hand side.

6.15.3 Proof by Stokes’ circulation theorem

Stokes’ theorem states that the flow rate of the curl of a differentiable
function, f , across D, is equal to the circulation of the function along
C,

∫∫

D

(
∇× f

)
· n dS =

∮

C

f · t dℓ. (6.15.7)

Setting f = n× u, we obtain

∫∫

D

n ·
(
∇× (n× u)

)
dS =

∮

C

(n× u) · t dℓ. (6.15.8)
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Using the properties of the mixed triple product, we find that the right-
hand side of (6.15.8) is equal to the right-hand side of (6.15.1). We
will demonstrate that the left-hand sides are also equal, that is,

n ·
(
∇× (n× u)

)
= P ·∇ · (P · u). (6.15.9)

The proof is best carried out working in Cartesian coordinates and index
notation.

In Cartesian index notation, the left-hand side of (6.15.9), denoted
by L, reads

L = ni ǫijk
∂(ǫkpqnpuq)

∂xj

= ni ǫijkǫpqk np
∂uq
∂xj

+ ni ǫijkǫpqk uq
∂np

∂xj
. (6.15.10)

Using the properties of the Levi–Civita symbol, we obtain

L = np np
∂uq
∂xq

− nq np
∂uq
∂xp

+ np uq
∂np

∂xq
− nq uq

∂np

∂xp
. (6.15.11)

Setting npnp = 1 and the third term on the right-hand side to zero, we
obtain

L =
∂uq
∂xq

− nq np
∂uq
∂xp

− un
∂np

∂xp
, (6.15.12)

where un = nquq is the normal component of u.

In index notation, the right-hand side of (6.15.9), denoted by R,
reads

R = (δij − ninj)
∂

∂xj

(
(δiq − ninq) uq

)
. (6.15.13)

Expanding the derivatives, we find that

R = (δij − ninj)
(∂ui
∂xj

− ninq
∂uq
∂xj

− uqnq
∂ni

∂xj
− niuq

∂nq

∂xj

)
.

(6.15.14)
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Carrying out the multiplication of the terms inside the two parentheses,
we obtain

R =
∂ui
∂xi

− ninq
∂uq
∂xi

− un
∂ni

∂xi
(6.15.15)

−niuq
∂nq

∂xi
− ninj

∂ui
∂xj

+ njnq
∂uq
∂xj

+ ninjuN
∂ni

∂xj
+ njuq

∂nq

∂xj
.

Only the first three terms on the right-hand side survive due to can-
cellations and other simplifications, showing that R = L and thereby
completing the proof.

Exercise

6.15.1 Explain how the surface divergence theorem simplifies in a plane.

6.16 Surface force equilibrium over a membrane

As an application, we consider the equilibrium of forces over a thin
membrane and identify the surface tensor T with the surface tension
tensor developing in the membrane due to deformation, denoted by τ .

6.16.1 Surface tension tensor

The tension tensor, τ , is defined such that the in-plane tension (surface
traction) exerted on a cross-section of the membrane that is normal to
the tangential unit vector b, as shown in Figure 6.5.1, is given by b ·τ .
To ensure that the surface traction lies in the tangential plane, we
require that

n · τ = 0, τ · n = 0. (6.16.1)

The surface traction, b ·τ , has a normal component, given by b (b ·τ ),
and a shearing component, given by (I− b⊗ b) · τ .

If a membrane develops isotropic tension, τ , then τ = τ P, where
P = I−n⊗n is the tangential projection operator and I is the identity
matrix. The shearing component is identically zero.
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6.16.2 Surface force balance

A force balance over the surface patch shown in Figure 6.5.1, requires
that

∫

C

b · τ dℓ +

∫∫

P

φ dS = 0, (6.16.2)

where φ is an external surface force density distribution over the mem-
brane. Now using the Gauss divergence theorem stated in (6.15.5), and
noting that P · τ = τ , we obtain

∫∫

P

∇̂ · τ dS +

∫∫

P

φ dS = 0, (6.16.3)

where ∇̂ ≡ P ·∇ is the tangential gradient operator. The integrand
on the left-hand side is the surface divergence of the surface tension
tensor, τ .

Taking the limit as the patch P shrinks to a point, or else noting
that the shape of P is arbitrary, we derive a force equilibrium equation

∇̂ · τ + φ = 0, (6.16.4)

expressing a balance between φ and the surface divergence of τ .

6.16.3 Tangential force balance

Projecting the equilibrium equation (6.16.4) onto the tangential plane,
we obtain the tangential equilibrium equation

(
∇̂ · τ

)
·P+ φ ·P = 0. (6.16.5)

Projecting equation (6.16.4) onto the unit normal vector, we obtain
the normal equilibrium equation

(
∇̂ · τ

)
· n+ φn = 0, (6.16.6)

where φn ≡ φ · n is the normal component of φ.
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6.16.4 Normal force balance

In index notation, the normal component of the equilibrium equation
(6.16.4) takes the form

Pαβ
∂ταγ
∂xβ

nγ + φn = 0, (6.16.7)

where Greek indices indicate Cartesian coordinates. Rearranging the
first term on the left-hand side, we obtain

Pαβ
∂(ταγnγ)

∂xβ
− Pαβ

∂ nγ

∂xβ
ταγ + φn = 0. (6.16.8)

Since τ · n = 0, the first term on the left-hand side is identically zero,
yielding

φn = Bαγ ταγ , (6.16.9)

where

Bαγ = Pαβ
∂ nγ

∂xβ
(6.16.10)

are the Cartesian components of the curvature tensor, as shown in
(6.4.16). In terms of the double-dot product,

φn = B : τ . (6.16.11)

In the absence of normal load φn = 0, the right-hand side must be
zero.

6.16.5 Isotropic tension

In the case of an isotropic tension field, τ = τ P, where τ is the
scalar tension. Substituting this expression into (6.16.9), we obtain the
simplified balance

−τ BαγPαγ + φn = 0, (6.16.12)

where

BαγPαγ = trace(B ·P) = trace(B) = 2κm (6.16.13)
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and κm is the mean curvature. We have found that

φn = 2κmτ, (6.16.14)

consistent with Laplace’s law for the pressure drop across a drop or
bubble representing a normal load.

6.16.6 Force equilibrium in surface curvilinear coordinates

Next, we introduce surface curvilinear coordinates and resolve the ex-
ternal force density distribution into tangential and normal components
as

φ = φjgj + φn n, (6.16.15)

where φn is the normal component. Using expression (6.13.15) for
the surface divergence, we derive tangential and normal equilibrium
equations in surface curvilinear coordinates,

τ ij,i + φj = 0, τ ijBji − φn = 0, (6.16.16)

where a comma indicates the covariant derivative. Comparing the sec-
ond equation with (6.16.11), we confirm that

B : τ = τ ijBji. (6.16.17)

In the case of an isotropic tension field, we set τ = τ P and τ ij =
τ gij, where τ is a constant tension, and find that gij,i = 0 and

gijBji = 2κm, (6.16.18)

where κm is the mean curvature, yielding the normal equilibrium equa-
tion shown in (6.16.14).

Exercise

6.16.1 Derive equation (6.16.18).
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n

transverse tension

tensions
surface

Figure 6.17.1 Illustration of a patch of a shell developing tangential
tensions, transverse shear tensions, and bending moments.

6.17 Surface force equilibrium over a shell

While tangential surface tensions develop over membranes, as discussed
in Section 6.6, transverse shear tensions normal to a material surface
and accompanying bending moments develop in addition inside thin
shells.

6.17.1 Transverse shear tension

The transverse shear tension can be described by a tangential surface
vector field, q, defined such that so that the transverse shear tension
in the direction of the unit normal vector, n, exerted on a cross-section
of the membrane that is normal to the tangential unit vector b is given
by b · q, as shown in Figure 6.17.1. By construction,

P · q = q. (6.17.1)

Extension to three dimensions can be implemented by requiring that
n · q = 0.

The complete interface tension tensor incorporating tangential and
transverse shear tensions is given by

λ ≡ τ + q⊗ n, (6.17.2)

where τ is the tangential tension tensor. Note that

P · λ = λ, b · λ = b · τ + (b · q)n, (6.17.3)
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where the unit vector b = t× n is defined in Figure 6.17.1.

The vector q can be resolved into surface contravariant or covariant
components as

q = qi gi = qi g
i. (6.17.4)

Using these expansions, we write

q⊗ n = qi gi ⊗ n = qi g
i ⊗ n. (6.17.5)

Note that

b · (q⊗ n) = qi (b · gi)n = qi (b · gi)n, (6.17.6)

representing the transverse shear tension oriented normal to the shell.

6.17.2 Force equilibrium

A force balance over the surface patch shown in Figure 6.17.1 requires
that

∫

C

b · λ dℓ+

∫∫

P

φ dS = 0, (6.17.7)

where φ is an external force density distribution over the area of the
shell, as discussed in Section 6.6 for a membrane.

Now using the Gauss divergence theorem stated in (6.15.5), and
recalling that P · λ = λ, we obtain

∫∫

P

∇̂ · λ dS +

∫∫

P

φ dS = 0. (6.17.8)

The integrand on the left-hand side is the surface divergence of λ.
Taking the limit as the P shrinks to a point, or else noting that the
patch P is arbitrary, we derive a force equilibrium equation

∇̂ · λ+ φ = 0, (6.17.9)

involving the surface divergence of λ.
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6.17.3 Resolution into tangential and normal components

In index notation, the γ Cartesian component of the surface divergence
of the term involving the transverse shear tension is given by

[ ∇̂ · (q⊗ n) ]γ = Pαβ
∂(qαnγ)

∂xβ
, (6.17.10)

where summation is implied over repeated Greek indices denoting Carte-
sian coordinates; for example, x1 = x, x2 = y, and x3 = z. Expanding
the derivative, we obtain

[ ∇̂ · (q⊗ n) ]γ = qα Pαβ
∂nγ

∂xβ
+ nγ Pαβ

∂qα
∂xβ

. (6.17.11)

Invoking the definition of the curvature tensor stated in (6.4.15) as

B = ∇̂n, we obtain

[ ∇̂ · (q⊗ n) ]γ = qαBαγ + nγ Pαβ
∂qα
∂xβ

. (6.17.12)

In vector notation,

∇̂ · (q⊗ n) = q ·B+ (∇̂ · q)n. (6.17.13)

The force equilibrium equation (6.17.9) then becomes

∇̂ · τ + q ·B+ (∇̂ · q)n+ φ = 0. (6.17.14)

This vector equation can be resolved into its tangential and normal
components as

(∇̂ · τ ) ·P+ q ·B+ φ ·P = 0 (6.17.15)

and

(∇̂ · τ ) · n+ ∇̂ · q + φ · n = 0. (6.17.16)

6.17.4 Bending moments

Bending moments develop inside the cross-section of a thin shell due to
in-plane stress distributions. The tangential tensions are the associated
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stress resultants. The bending moments can be described in terms of
a surface Cartesian tensor, m, which is defined so that the bending
moment vector exerted on a membrane cross-section that is normal to
the tangential unit vector b is given by

n× (b ·m). (6.17.17)

To ensure that the bending moments lie in a tangential plane, we require
that n ·m = 0 and m · n = 0.

6.17.5 Torque balance

Performing a torque balance over the surface patch shown in Figure
6.17.1 with respect to an arbitrary reference point, x0, we write

∫

C

n× (b ·m) dℓ+

∫

C

(x− x0)× (b · λ) dℓ

+

∫∫

P

(x− x0)× φ dS = 0. (6.17.18)

Combining this equation with the equilibrium equation (6.17.9) to elim-
inate the last integral involving the external force load density function,
φ, we obtain the simplified equation

∫

C

n× (b ·m) dℓ +

∫

C

(x− x0)× (b · λ) dℓ

−
∫∫

P

(x− x0)× (∇̂ · λ) dS = 0. (6.17.19)

Next, we use the surface divergence theorem to eliminate terms involv-
ing the arbitrary point x0 due to mutual cancellation, and obtain the
simplified form
∫

C

n× (b ·m) dℓ +

∫

C

x× (b · λ) dℓ−
∫∫

P

x× (∇̂ · λ) dS = 0.

(6.17.20)

In index notation, the ith Cartesian component of this equation reads
∫

C

bp (mpkǫijk nj ) dℓ +

∫

C

bp(λpkǫijk xj) dℓ

−
∫∫

P

ǫijkxj [∇̂ · λ]k dS = 0. (6.17.21)
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Reverting to vector notation, we obtain

∫

C

b · (m× n) dℓ+

∫

C

b · (λ× x) dℓ−
∫∫

P

(∇̂ · λ)× x dS = 0.

(6.17.22)

Now applying the surface divergence theorem to the first two integrals,
we obtain

∫∫

P

∇̂ · (m× n) dS +

∫∫

P

∇̂ · (λ× x)

−
∫∫

P

(∇̂ · λ)× x dS = 0. (6.17.23)

All three integrals in this equation are performed over the patch surface
area.

6.17.6 Differential torque balance

Discarding the integral signs in the integral balance (6.17.23) and re-
arranging, we obtain the differential torque balance

∇̂ · (m× n) = −∇̂ · (λ× x) + (∇̂ · λ)× x. (6.17.24)

In index notation, the ith Cartesian component of this equation reads

∇̂j(mjpǫipknk) = −∇̂j(λjpǫipkxk) + (∇̂jλjp) ǫipkxk. (6.17.25)

Simplifying the right-hand side, we obtain

∇̂j(mjpǫipknk) = −ǫipkλjp ∇̂jxk. (6.17.26)

Reverting to vector–matrix notation, we obtain the equilibrium condi-
tion

∇̂ · (m× n) = −(λT · ∇̂)× x, (6.17.27)

where the superscript T denotes the matrix transpose.
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6.17.7 Resolution into tangential and normal components

Expanding the derivative on the left-hand side of (6.17.26), we obtain

ǫipk
(
nk∇̂jmjp +mjp∇̂jnk

)
= ǫipk

(
nk∇̂jmjp +mjpBjk

)
, (6.17.28)

where Bjk is a Cartesian component of the curvature tensor.

Since ∂xk/∂xl = δkl, the right-hand side of (6.17.26) can be ma-
nipulated as follows:

ai ≡ −ǫipk λjp Pjl
∂xk
∂xl

= −ǫipk λjp Pjk. (6.17.29)

Resolving λ into two constituents, we obtain

ai = −ǫipk τjp Pjk − ǫipk qjnp Pjk = −ǫipk τkp − ǫipk qknp.(6.17.30)

The last term involves the unit normal vector.

Substituting (6.17.28) and (6.17.30) into (6.17.26), we obtain

ǫipk
(
nk∇̂jmjp +mjpBjk

)
= −ǫipk τkp − ǫipk qknp. (6.17.31)

Rearranging, we obtain

ǫipk
(
nk∇̂jmjp + qk np

)
= −ǫipk (τkp +Bkjmjp). (6.17.32)

This equation is satisfied when the tensors inside the parentheses on
the left- and right-hand sides are symmetric with respect to the indices
p and k, which is true when

qk = ∇̂jmjk (6.17.33)

and

τkp +Bkjmjp = τpk +Bpjmjk. (6.17.34)

With regard to (6.17.33), we ensure that q · n = 0 by setting

q = ( ∇̂ ·m ) ·P. (6.17.35)
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With regard to (6.17.34), we derive an expression for the antisymmetric
part of the in-plane tension tensor,

τ − τT = −B ·m+mT ·B = −B ·m+ (B ·m)T, (6.17.36)

where the superscript T denotes the matrix transpose. The right-hand
side involves the antisymmetric part of B ·m. When m is symmetric,
the tensor τ is also symmetric.

Exercises

6.17.1 Introduce a surface tensor field with componentsMij = ǫikpnkmjp

and show that m×n = −MT and the equilibrium condition (6.17.27)

becomes ∇̂ ·MT = (λT · ∇̂)× x.

6.17.2 Derive equation (6.17.27) from (6.17.26).

6.18 Axisymmetric shells

Consider an axisymmetric shell whose shape is generated by rotating a
curve around the x axis, as shown in Figure 6.18.1. To describe the
profile of the shell, we introduce cylindrical polar coordinates consist-
ing of the axial position, x, the distance from the x axis, σ, and the
azimuthal angle, ϕ, measured around the x axis with origin in the xy
plane.

6.18.1 Arc length parametrization

The axisymmetric shape can be parametrized in terms of the arc length
measured along the contour of the membrane in an azimuthal plane, ℓ,
as shown in Figure 6.18.1.

The unit vector that is tangential to the membrane and lies in an
azimuthal plane defined by a certain value of the azimuthal angle, ϕ,
is denoted by tℓ, whereas the azimuthal unit vector is denoted by tϕ.
The unit vector normal to the membrane, n, points outward, as shown
in Figure 6.18.1. The triplet of vectors, tℓ, tϕ, and n define local
orthogonal coordinates.
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Figure 6.18.1 Illustration of an axisymmetric shell enclosed by a
membrane.

The axial position of the shell in an azimuthal plane can described
by a function

x = ξ(ℓ), (6.18.1)

and the radial position can described by either one of the functions

σ = ς(ℓ) = Σ(x). (6.18.2)

We find that

tℓ =



ξ′

ς ′ cosϕ
ς ′ sinϕ


 , tϕ =




0
− sinϕ
cosϕ


 , n =




ς ′

−ξ′ cosϕ
−ξ′ sinϕ


 ,

(6.18.3)

where ξ′ ≡ dξ/dℓ, ς ′ ≡ dς/dℓ, and ξ′2 + ς ′2 = 1.

6.18.2 Principal curvatures

The principal curvatures of the interface in an azimuthal and its con-
jugate plane are denoted by κℓ and κϕ. The curvature tensor is given
by

B = κℓ tℓ ⊗ tℓ + κϕ tϕ ⊗ tϕ. (6.18.4)
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Using fundamental relations of differential geometry, we find that

κℓ = − ± ς ′′√
1− ς ′2

= − ± Σ′′

(1 + Σ′2)3/2
(6.18.5)

and

κϕ = −1

σ

dx

dℓ
= ±1

σ

√
1− ς ′2 = ±1

σ

1√
1 + Σ′2

, (6.18.6)

where Σ′ ≡ dΣ/dx. The plus sign of ± is selected when dx/dℓ < 0,
and the minus sign otherwise.

6.18.3 Codazzi’s equation

Expressions (6.18.5) and (6.18.6) are consistent with Codazzi’s equa-
tion

κℓ =
d(σ κϕ)

dσ
, (6.18.7)

which allows us to compute one of the principal curvatures in terms of
the other. Rearranging (6.18.7), we obtain

dκϕ
dσ

=
κℓ − κϕ

σ
. (6.18.8)

Applying (6.18.8) at the axis of symmetry where σ = 0, and using the
rule de l’Hôspital to evaluate the right-hand side, we obtain

2
(dκϕ

dℓ

)
σ=0

=
(dκℓ
dℓ

)
σ=0

. (6.18.9)

Differentiating (6.18.8) with respect to ℓ and working in a similar fash-
ion, we find that

3
(d2κϕ

dℓ2

)
σ=0

=
(d2κℓ
dℓ2

)
σ=0

. (6.18.10)
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6.18.4 Tensions and bending moments

Working under the auspices of thin-shell theory, we consider the mid-
surface of the membrane and introduce (a) the azimuthal and merid-
ional tensions, τℓ and τϕ, which are the principal tensions of the in-plane
stress resultants, (b) the transverse shearing tension, q, exerted on a
cross-section of the membrane that is normal to the x axis, and (c) the
meridional and azimuthal bending moments, mℓ and mϕ, as depicted
in Figure 6.18.1.

6.18.5 Shearing-tension surface vector field

The tangential surface vector field q describing the shear tension, in-
troduced in Section 6.17, is given by

q = q tℓ. (6.18.11)

We find that

q ·B = q κℓ tℓ. (6.18.12)

The surface divergence of q is given by

∇̂ · q = tℓ ·
∂(q tℓ)

∂ℓ
+

1

σ
tϕ · ∂(qtℓ)

∂ϕ
. (6.18.13)

Expanding the derivatives and simplifying, we obtain

∇̂ · q =
∂q

∂ℓ
+ q

1

σ
tϕ · ∂tℓ

∂ϕ
. (6.18.14)

With regard to the last term on the right-hand side, we use expressions
(6.18.3) to compute

tϕ · ∂tℓ
∂ϕ

=
∂σ

∂ℓ
= ς ′, (6.18.15)

and obtain

∇̂ · q =
1

σ

∂(σq)

∂ℓ
. (6.18.16)
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Later in this section, this expression will be substituted into the inter-
facial force balance.

6.18.6 In-plane tension tensor

The in-plane tension tensor is given by

τ = τℓ tℓ ⊗ tℓ + τϕ tϕ ⊗ tϕ, (6.18.17)

where τℓ and τϕ depend on ℓ but not on ϕ. The surface divergence is
given by

∇̂ · τ = tℓ ·
∂τ

∂ℓ
+

1

σ
tϕ · ∂τ

∂ϕ
. (6.18.18)

Substituting expression (6.18.17) for τ , expanding the derivatives, and
neglecting terms that are identically zero, we find that

∇̂ · τ =
dτℓ
dℓ

tℓ + τℓ
∂tℓ
∂ℓ

+
1

σ

(
τℓ tϕ · ∂tℓ

∂ϕ
tℓ + τϕ

∂tϕ
∂ϕ

)
. (6.18.19)

With regard to the last term on the right-hand side, we use expressions
(6.18.3) and (6.18.6) to compute

∂tϕ
∂ϕ

= −




0
cosϕ
sinϕ


 = −ς ′ tℓ + ξ′ n = −ς ′ tℓ − σ κϕ n. (6.18.20)

Substituting this expression into (6.18.19), setting ∂tℓ/∂ℓ = −κℓ n,
and recalling (6.18.15), we obtain

∇̂ · τ =
dτℓ
dℓ

tℓ − τℓ κℓ n+
1

σ

(
τℓ ς

′ tℓ − τϕ(ς
′ tℓ + σ κϕ n)

)
.

(6.18.21)

Separating the normal from the tangential components, we obtain

∇̂ · τ = −(κℓ τℓ + κϕ τϕ)n+
( dτℓ
dℓ

+
1

σ

dσ

dℓ
(τℓ − τϕ)

)
tℓ.

(6.18.22)
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Substituting expressions (6.18.12), (6.18.16), and (6.18.22) into
the interfacial force balance (6.17.14), we obtain

−
(
κℓ τℓ + κϕ τϕ − 1

σ

d(σq)

dℓ

)
n

+
(dτℓ
dℓ

+
1

σ

dσ

dℓ
(τℓ − τϕ) + q κℓ

)
tℓ + φ = 0. (6.18.23)

Now resolving the distributed load into normal and tangential compo-
nents,

φ = φn n+ φℓ tℓ, (6.18.24)

we obtain the corresponding equilibrium equations

φn = κℓ τℓ + κϕ τϕ − 1

σ

d(σq)

dℓ
(6.18.25)

and

φℓ = −dτℓ
dℓ

− 1

σ

dσ

dℓ
(τℓ − τϕ)− κℓ q = −1

σ

d(σ τℓ)

dℓ
+
τϕ
σ

dσ

dℓ
− κℓ q.(6.18.26)

6.18.7 Torque equilibrium

The tensor of bending moments is given by

m = mℓ tℓ ⊗ tℓ +mϕ tϕ ⊗ tϕ. (6.18.27)

The counterpart of equation (6.18.22) for the surface divergence is

∇̂ ·m = −(κℓmℓ + κϕmϕ)n+
( dmℓ

dℓ
+

1

σ

dσ

dℓ
(mℓ −mϕ)

)
tℓ.

(6.18.28)

Substituting this expression into (6.17.35), we obtain

q =
1

σ

(d(σ mℓ)

dℓ
−mϕ

dσ

dℓ

)
=

1

σ

dσ

dℓ

(d(σ mℓ)

dσ
−mϕ

)
. (6.18.29)
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Constitutive equations for the elastic tensions and bending moments
are required for closure.

Exercises

6.18.1 Derive expressions (6.18.9) and (6.18.10).

6.18.2 Derive equations (6.18.25), (6.18.26), and (6.18.29) by per-
forming force and torque balances over a small section of the membrane
that is confined between (a) two adjacent azimuthal planes passing
through the x axis, and (b) two parallel planes that are perpendicu-
lar to the x axis and enclose a small section of the membrane in a
azimuthal plane, as shown in Figure 6.18.1.
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abc, 354

base1, 41
base2, 44
base3, 45

base4, 47
biodiag, 112
bioid, 104

bioten, 92, 96, 98, 108
bio, 78
cartesian, 31, 49
channel, 195

crv6 interp, 355
crv6, 359
curvatures, 337

elliptic DD, 219
elliptic grid, 215
levciv1, 65
levciv2, 68

map, 212
nonortho, 146, 158, 159
oblique, 178, 182

pois fds PPDD, 191
poisson, 186
quad, 209
tensor, 54

trans1, 119, 124
trans2, 128
Alten, 65, 68

Bio, 78, 92, 96, 98, 104, 108, 112

Channel, 186, 191, 195
Curvatures, 337
Elliptic, 215, 219
Map, 212
Nonortho, 146, 158, 159
Oblique, 178, 182
Quad, 209
Tenbase, 41, 44, 45, 47
Tencar, 49
Tensor, 54
Trans, 119, 124, 128
Triangle6, 354, 355, 359
Vecar, 31

alternating tensor, 21, 64, 135, 266
arc length, 395

barycentric coordinates, 350
base

biorthogonal, 71, 89
Cartesian, 10
contravariant, 72
covariant, 72
orthogonal, 9
transformation, 116
vectors
contravariant, 145, 149
covariant, 141

bending moments, 391
biorthogonal
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base, 71
bases, 89
vector base, 71

biorthonormal
base vectors, 144
bases, 72

calculus
in non-Cartesian coordinates,

269
on surfaces, 371
vector and tensor, 269

Cartesian
base, 10
change, 30, 52
laboratory, 14, 51
universal, 14, 51

product, 23, 43
tensor base, 48
vector, 13

Cauchy
equation, 296, 309, 313
stress tensor, 296

channel coordinates, 185
Christoffel

formula, 251
symbol
of the first kind, 252
of the second kind, 247
vectorial, 247

Codazzi equation, 397
component matrix, 40

diagonal, 110
conformal mapping, 210
continuity equation, 165, 296
contravariant

base, 72
base vectors, 145, 149, 225

coordinates, 140
convected coordinates, 312
coordinates, 25

channel, 185
contravariant, 140
convected, 312
covariant, 151, 231
cylindrical, 26
cylindrical polar, 253, 365
elliptic, 214
evolving, 302
helical, 258
moving, 306
non-Cartesian, 139, 223
applications, 296

nonorthogonal homogeneous, 167
oblique, 167
spherical, 28
surface , 325

covariant
base, 72
base vectors, 141
coordinates, 151, 231
derivative
of a tensor, 263
of a vector, 261

metric coefficients, 143
Cramer’s rule, 145
cross product, 70, 88, 137, 267
curl, 276, 281
curvature, 333

Gaussian, 338
gaussian, 346
mean, 336, 339, 345
principal, 337, 396
tensor, 339, 343, 362

cylindrical coordinates, 26, 253, 365
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cylindrical surface, 373

deformation
gradient, 224
homogeneous, 316

delta
function, 313, 318, 321, 323
Kronecker, 10

derivative
covariant
of a tensor, 263
of a vector, 261

determinant, 98, 127, 246
diagonal matrix, 110
difference, finite, 165, 219
differential

displacement, 25
Dirac delta function, 313, 318, 321,

323
direction cosines, 9
directional derivative, 280
displacement, 25
divergence

in terms of metric coefficients,
275

of a tensor field, 288
of a vector field, 164, 274
surface
of a tensor field, 377
of a vector field, 371

theorem
surface, 381

dot product, 3
double-dot product, 241

of two tensor products, 24
of two tensors, 51, 102

dyadic
base, 43

matrix base, 48
product, 23, 43

Einstein summation convention, 5,
39

elliptic coordinates, 214
end-points of a vector, 2
Euclidean space, 294
evolving coordinates, 302
extensional

rate, 323
extensional flow, 323

finite
-difference method, 176, 219
-volume method, 165, 241

first fundamental form
of a surface, 329

flow
extensional, 323
shear, 317
extensional, 323
oscillatory, 321

frame independence, 17
fundamental form

of a plane, 144
of space, 26, 230

Gaussian curvature, 338
gradient, 269

of a scalar function, 269, 271
of a vector field, 278
surface
of a tensor field, 380
of a vector field, 375

Green’s
function, 313, 323
for extensional flow, 323
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for oscillatory shear flow, 321
for steady shear flow, 317

helical
coordinates, 258
pitch, 259

homogeneous deformation, 316
hypotenuse, 353

identity
matrix, 49
tensor, 56

inner product, 3, 18, 83
interpolation

function
for a six-node triangle, 355

functions, 205
for a three-node triangle, 350

inverse, 107, 240

Jacobian, 76
Jacobian metric, 225, 229

Kronecker delta, 10, 11, 73, 237

laboratory Cartesian base, 51
Laplace equation, 170, 171
Laplacian, 170, 211

of a scalar field, 275
of a scalar function, 166
of a vector field, 290

law of cosines, 19
Levi–Civita

connection, 250
symbol, 20, 86, 225

mapping, 210
of a curved triangle, 355
of a flat triangle, 350

material derivative, 300
mathematical physics, 296
matrix

base, 38
components, 38, 40
elements, 38
orthogonal, 30

mean curvature, 336
membrane, 385
metric

areal, 161
coefficients, 74, 156, 229
of a surface, 327
tensor, 159, 240

metric coefficients
covariant, 143

Mohr transformation, 58
moment-of-inertia tensor, 60
momentum tensor, 62
moving coordinates, 306
moving time derivative, 299

Navier–Stokes equation, 299
nonorthogonal coordinates

homogeneous, 167
normal

plane, 330
vector, 326

object, 8, 42
oblique coordinates, 167

canonical, 173
orthogonal

base, 9
coordinates, 142
matrix, 30

outer product, 70, 88, 137, 267

pitch, 259
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Poisson equation, 175, 209, 218
position, 25
pressure, 299
principal curvatures, 337, 396
product

double-dot, 241
projection

operator, 385
tensor, 330

quadrilateral, 204

residual, 177
Ricci

lemma, 287
Ricci’s lemma, 287
Riemann

–Christoffel curvature tensor,
291, 363

space, 294

second fundamental form of a sur-
face, 347

separation of variables, 170
shear flow, 317

oscillatory, 321
shear rate, 317
shell, 389

axisymmetric, 395
similarity transformation, 56
spectral

expansion, 112
sphere, 367
spherical

coordinates, 28, 256
surface, 374

stress tensor, 58
summation convention, 5, 39

surface
calculus, 371
coordinates, 325
cylindrical, 373
first fundamental form, 329
force balance, 386
metric, 327
second fundamental form, 347
spherical, 374
tension tensor, 385

tension, 385
isotropic, 385

tensor, 38
components, 235, 237
first-order, 12, 34
gradient, 284
high-order, 63
inverse, 107, 240
metric, 240
product, 21, 43
rule, 59
second-order, 42, 57
transpose, 239
zeroth-order, 38

time derivative, moving, 299
torque balance, 392, 393
transformation

matrix, 11, 30, 52
similarity, 56

transpose, 239
transverse shear tension, 389
triangle

six-node, 352
standard
right, 349

three-node, 349
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universal Cartesian base, 51

vector
addition, 2, 6
base, 4
Cartesian, 13
component array, 8
components, 4, 7, 235
cross product, 20
end-points, 2
expansion, 4
inner product, 6, 13
length, 3
magnitude, 19
multiplication, 18
by a scalar, 2

norm, 3
outer product, 4, 20
parallel, 3
physical and conceptual, 1
subtraction, 2, 6

viscosity, 299

Weingarten equation, 347
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Tensors Unravelled

C. Pozrikidis

In this concise yet comprehensive book, the author introduces the no-
tion of tensors with reference to arbitrary bases in Cartesian or non-
Cartesian, rectilinear or curvilinear coordinates. The description of ten-
sors in terms of their components in a specified base is emphasized and
transformation rules are established. Noteworthy features include the
following:

• An introduction to tensors is presented preceding the discussion
of curvilinear coordinates

• The concept of uniadic, dyadic, and multiadic bases is emphasized
with reference to one-, two-, and higher-index tensor arrays

• Non-Cartesian coordinates are discussed from the viewpoint of
applied mathematics and engineering, and comprehensive expres-
sions from differential calculus are derived

• Convected coordinates are discussed and expressions for Green’s
function of the convection–diffusion equation are derived

• The apparatus of surface curvilinear coordinates is discussed in
terms of the curvature tensor with applications to the mechanics
of membranes and shells

• Theory and computation are discussed alongside by way of com-
puter codes that illustrate and implements theoretical predictions

• A suite of computer codes that confirm theoretical derivations
and encode methods for computing solutions of selected differ-
ential equations accompany the text

CHESTER & BENNINGTON


